122 research outputs found
Covalent ligation studies on the human telomere quadruplex
Recent X-ray crystallographic studies on the human telomere sequence d[AGGG(TTAGGG)(3)] revealed a unimolecular, parallel quadruplex structure in the presence of potassium ions, while earlier NMR results in the presence of sodium ions indicated a unimolecular, antiparallel quadruplex. In an effort to identify and isolate the parallel form in solution, we have successfully ligated into circular products the single-stranded human telomere and several modified human telomere sequences in potassium-containing solutions. Using these sequences with one or two terminal phosphates, we have made chemically ligated products via creation of an additional loop. Circular products have been identified by polyacrylamide gel electrophoresis, enzymatic digestion with exonuclease VII and electrospray mass spectrometry in negative ion mode. Optimum pH for the ligation reaction of the human telomere sequence ranges from 4.5 to 6.0. Several buffers were also examined, with MES yielding the greatest ligation efficiency. Human telomere sequences with two phosphate groups, one each at the 3′ and 5′ ends, were more efficient at ligation, via pyrophosphate bond formation, than the corresponding sequences with only one phosphate group, at the 5′ end. Circular dichroism spectra showed that the ligation product was derived from an antiparallel, single-stranded guanine quadruplex rather than a parallel single-stranded guanine quadruplex structure
Vitamin D status in women with dichorionic twin pregnancies and their neonates:a pilot study in China
Background: Vitamin D deficiency is a global public health issue in women and children and is associated with adverse impacts on child growth, such as rickets. However, prior studies have mainly focused on measuring vitamin D levels in singleton pregnant women and their offspring, and very limited studies have revealed the prevalence of vitamin D deficiency in twin pregnant women and their offspring. The aim of this study was to investigate vitamin D levels in twin-pregnant women and their neonates. We also explored the correlation of maternal vitamin D levels with neonatal outcomes and infant growth. Methods: A prospective subcohort investigation was carried out among 72 dichorionic, diamniotic twin-pregnant mothers and their twin offspring from the Longitudinal Twin Study. Peripheral blood was collected from the mothers in the third trimester, and cord blood was collected from neonates at birth to identify 25[OH]D levels. Data on the characteristics of the mothers and neonates were collected. Infant growth data and food sensitivities were also collected. Results: The average maternal 25[OH]D level was 31.78 ng/mL, with 19.4% being deficient and 20.8% insufficient, while the average neonatal 25[OH]D level was 15.37 ng/mL, with 99.3% being deficiency or insufficient. A positive correlation was found between maternal and neonatal 25[OH]D levels (beta-value: 0.43, 95% CI: 0.37, 0.49). Interestingly, the higher the maternal 25[OH]D level was, the smaller the cotwin birthweight discordance (beta-value: -2.67, 95% CI: − 5.11, − 0.23). In addition, the infants of mothers with vitamin D deficiency were more likely to be allergic to foods at 6 months than those of mothers with vitamin D sufficiency. Conclusions: Twin neonates were at high risk of vitamin D deficiency, although their mothers’ vitamin D deficiency partially improved. Higher maternal vitamin D levels were associated with smaller discordance of cotwin birthweight. Trial registration: Chinese Clinical Trial Registry ChiCTR-OOC-16008203, 1st April 2016
Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy
AbstractNewcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical study and are currently approved for clinical trials. NDV Anhinga strain which is a mesogenic strain should be classified as lytic strain and has a therapeutic efficacy in hepatocellular cancer. In this study, we evaluated the capacity of NDV Anhinga strain to elicit immune reaction in vivo and the possibility for using as a vaccine vector for expressing tumor therapeutic factors. Interleukin-2 (IL-2) could boost the immune response against the tumor cells. Therefore, we use NDV Anhinga strain as backbone to construct a recombinant virus (NDV/Anh-IL-2) expressing IL-2. The virus growth curve showed that the production of recombinant NDV/Anh-IL-2 was slightly delayed compared to the wild type. The NDV/Anh-IL-2 strain could express soluble IL-2 and effectively inhibit the growth of hepatocellular carcinoma in vivo. 60 days post-treatment, mice which were completely cured by previous treatment were well protected when rechallenged with the same tumor cell. From the H&E-stained sections, intense infiltration of lymphocyte was observed in the NDV Anhinga strain treated group, especially in NDV/Anh-IL-2 group. The NDV Anhinga strain could not only kill the tumor directly, but could also elicit immune reaction and a potent immunological memory when killing tumor in vivo. In conclusion, the Anhinga strain could be an effective vector for tumor therapy; the recombinant NDV/Anh-IL-2 strain expressing soluble IL-2 is a promising candidate for hepatoma therapy
Global acetylome profiling indicates EPA impedes but OA promotes prostate cancer motility through altered acetylation of PFN1 and FLNA.
Prostate cancer (PCa) is one of the leading causes of cancer morbidity and mortality in men. Metastasis is the main cause of PCa-associated death. Recent evidence indicated a significant reduction in PCa mortality associated with higher ω-3 polyunsaturated fatty acids (PUFAs) consumption. However, the underlying mechanisms remained elusive. In this study, we applied global acetylome profiling to study the effect of fatty acids treatment. Results indicated that oleic acid (OA, monounsaturated fatty acid, MUFA, 100 µM) elevates while EPA (eicosapentaenoic acid, 100 µM) reduces the acetyl-CoA level, which alters the global acetylome. After treatment, two crucial cell motility regulators, PFN1 and FLNA, were found with altered acetylation levels. OA increased the acetylation of PFN1 and FLNA, whereas EPA decreased PFN1 acetylation level. Furthermore, OA promotes while EPA inhibits PCa migration and invasion. Immunofluorescence assay indicated that EPA impedes the formation of lamellipodia or filopodia through reduced localization of PFN1 and FLNA to the leading edge of cells. Therefore, perturbed acetylome may be one critical step in fatty acid-affected cancer cell motility. This study provides some new insights into the response of ω-3 PUFAs treatment and a better understanding of cancer cell migration and invasion modulation
Method for Automatic Tube Current Selection for Obtaining a Consistent Image Quality and Dose Optimization in a Cardiac Multidetector CT
Objective: To evaluate a quantitative method for individually adjusting the tube current to obtain images with consistent noise in electrocardiogram (ECG)-gated CT cardiac scans. Materials and Methods: The image noise from timing bolus and cardiac CT scans of 80 patients (Group A) who underwent a 64-row multidetector (MD) CT cardiac examination with patient-independent scan parameters were analyzed. A formula was established using the noise correlation between the timing bolus and cardiac scans. This formula was used to predict the required tube current to obtain the desired cardiac CT image noise based on the timing bolus noise measurement. Subsequently, 80 additional cardiac patients (Group B) were scanned with individually adjusted tube currents using an established formula to evaluate its ability to obtain accurate and consistent image noise across the patient population. Image quality was evaluated using score scale of 1 to 5 with a score of 3 or higher being clinically acceptable. Results: Using the formula, we obtained an average CT image noise of 28.55 Hounsfield unit (HU), with a standard deviation of only 1.7 HU, as opposed to a target value of 28 HU. Image quality scores were 4.03 and 4.27 for images in Groups A and B, respectively, and there was no statistical difference between the image quality scores between the two groups. However, the average CT dose index (CTDIvol) was 30% lower for Group B. Conclusion: Adjusting the tube current based on timing bolus scans may provide a consistent image quality and dose optimization for cardiac patients of various body mass index values.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000271891500005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Radiology, Nuclear Medicine & Medical ImagingSCI(E)PubMed15ARTICLE6568-5741
Study on TCM Syndrome Differentiation of Primary Liver Cancer Based on the Analysis of Latent Structural Model
Primary liver cancer (PLC) is one of the most common malignant tumors because of its high incidence and high mortality. Traditional Chinese medicine (TCM) plays an active role in the treatment of PLC. As the most important part in the TCM system, syndrome differentiation based on the clinical manifestations from traditional four diagnostic methods has met great challenges and questions with the lack of statistical validation support. In this study, we provided evidences for TCM syndrome differentiation of PLC using the method of analysis of latent structural model from clinic data, thus providing basis for establishing TCM syndrome criteria. And also we obtain the common syndromes of PLC as well as their typical clinical manifestations, respectively
SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements
Contemporary high dimensional biological assays, such as mRNA expression microarrays, regularly involve multiple data processing steps, such as experimental processing, computational processing, sample selection, or feature selection (i.e. gene selection), prior to deriving any biological conclusions. These steps can dramatically change the interpretation of an experiment. Evaluation of processing steps has received limited attention in the literature. It is not straightforward to evaluate different processing methods and investigators are often unsure of the best method. We present a simple statistical tool, Standardized WithIn class Sum of Squares (SWISS), that allows investigators to compare alternate data processing methods, such as different experimental methods, normalizations, or technologies, on a dataset in terms of how well they cluster a priori biological classes. SWISS uses Euclidean distance to determine which method does a better job of clustering the data elements based on a priori classifications. We apply SWISS to three different gene expression applications. The first application uses four different datasets to compare different experimental methods, normalizations, and gene sets. The second application, using data from the MicroArray Quality Control (MAQC) project, compares different microarray platforms. The third application compares different technologies: a single Agilent two-color microarray versus one lane of RNA-Seq. These applications give an indication of the variety of problems that SWISS can be helpful in solving. The SWISS analysis of one-color versus two-color microarrays provides investigators who use two-color arrays the opportunity to review their results in light of a single-channel analysis, with all of the associated benefits offered by this design. Analysis of the MACQ data shows differential intersite reproducibility by array platform. SWISS also shows that one lane of RNA-Seq clusters data by biological phenotypes as well as a single Agilent two-color microarray
SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements
Contemporary high dimensional biological assays, such as mRNA expression microarrays, regularly involve multiple data processing steps, such as experimental processing, computational processing, sample selection, or feature selection (i.e. gene selection), prior to deriving any biological conclusions. These steps can dramatically change the interpretation of an experiment. Evaluation of processing steps has received limited attention in the literature. It is not straightforward to evaluate different processing methods and investigators are often unsure of the best method. We present a simple statistical tool, Standardized WithIn class Sum of Squares (SWISS), that allows investigators to compare alternate data processing methods, such as different experimental methods, normalizations, or technologies, on a dataset in terms of how well they cluster a priori biological classes. SWISS uses Euclidean distance to determine which method does a better job of clustering the data elements based on a priori classifications. We apply SWISS to three different gene expression applications. The first application uses four different datasets to compare different experimental methods, normalizations, and gene sets. The second application, using data from the MicroArray Quality Control (MAQC) project, compares different microarray platforms. The third application compares different technologies: a single Agilent two-color microarray versus one lane of RNA-Seq. These applications give an indication of the variety of problems that SWISS can be helpful in solving. The SWISS analysis of one-color versus two-color microarrays provides investigators who use two-color arrays the opportunity to review their results in light of a single-channel analysis, with all of the associated benefits offered by this design. Analysis of the MACQ data shows differential intersite reproducibility by array platform. SWISS also shows that one lane of RNA-Seq clusters data by biological phenotypes as well as a single Agilent two-color microarray
Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton.
Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants. [Abstract copyright: © 2023. The Author(s).
- …