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Abstract

Contemporary high dimensional biological assays, such as mRNA expression microarrays, regularly involve multiple data
processing steps, such as experimental processing, computational processing, sample selection, or feature selection (i.e.
gene selection), prior to deriving any biological conclusions. These steps can dramatically change the interpretation of an
experiment. Evaluation of processing steps has received limited attention in the literature. It is not straightforward to
evaluate different processing methods and investigators are often unsure of the best method. We present a simple
statistical tool, Standardized WithIn class Sum of Squares (SWISS), that allows investigators to compare alternate data
processing methods, such as different experimental methods, normalizations, or technologies, on a dataset in terms of how
well they cluster a priori biological classes. SWISS uses Euclidean distance to determine which method does a better job of
clustering the data elements based on a priori classifications. We apply SWISS to three different gene expression
applications. The first application uses four different datasets to compare different experimental methods, normalizations,
and gene sets. The second application, using data from the MicroArray Quality Control (MAQC) project, compares different
microarray platforms. The third application compares different technologies: a single Agilent two-color microarray versus
one lane of RNA-Seq. These applications give an indication of the variety of problems that SWISS can be helpful in solving.
The SWISS analysis of one-color versus two-color microarrays provides investigators who use two-color arrays the
opportunity to review their results in light of a single-channel analysis, with all of the associated benefits offered by this
design. Analysis of the MACQ data shows differential intersite reproducibility by array platform. SWISS also shows that one
lane of RNA-Seq clusters data by biological phenotypes as well as a single Agilent two-color microarray.
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Introduction

Experimental Motivation
Suppose an investigator has a dataset that has a fixed number of

samples designed to measure biological differences (such as tumor/

normal) and wants to process the data, but the optimal processing

method is unknown. This processing may involve background

correction, normalization, sample selection, or feature/gene

selection. A central question is, ‘‘Which processing method works

best on a given dataset?’’

There are a variety of papers in the literature which address the

above question [1–8]. However, criteria used to compare certain

processing methods are not easily applied to answer different

processing problems. For example, Ritchie et al [9] compare

background correction methods for two-color microarrays by

comparing MA-plots, precision as measured by the residual

standard deviation of each probe, bias and differential expression

as measured by SAM regularized t-statistics [10]. In comparing

Affymetrix microarray normalization methods, Bolstad et al [11]

perform variance, pairwise and bias comparisons between arrays.

These in-depth analyses are useful and informative. However, they

can be very complex to implement and interpret. Thus, it may be

unproductive for an investigator to invest sufficient time for this in

every dataset, and for all aspects of experimental design. In

addition, after performing these in-depth analyses, the ‘‘best

method’’ is not always clear because many analyses do not report

p-values and are instead based on subjective evaluations (such as

looking at MA plots). We propose a method that is not specific to

the processing method or platform under investigation and that

reports a p-value which easily allows investigators to determine
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whether two processing methods are statistically equivalent or if

one method significantly outperforms the other.

Generalizing the Problem
Many problems can arise when trying to evaluate two

processing methods or compare different platforms. For instance,

the best way to compare methods/platforms is not always clear

when the data are on different scales or the methods have different

(unknown) distributions. Also, investigators may not be interested

in measuring phenotypes, but rather measuring the elements of the

phenotypes. It is also important for investigators to select the

optimal method independent of the results.

Motivated by these problems, our goal is to develop a more

generic approach to comparing processing methods or platforms.

Our method, Standardized WithIn class Sum of Squares (SWISS),

uses gene expression (Euclidean) distance to measure which

processing method under investigation does a better job of clustering

data into biological phenotypes (or other pre-defined classes, which

could be chosen using a clustering method such as k-means or

hierarchical clustering). SWISS takes a multivariate approach to

determining the best processing method. It tends to down-weight

noise genes (genes with little variation across all samples) while

depending more on differentially expressed genes (genes with large

variation between the classes). We also develop a permutation test

based on the SWISS scores that allows an investigator to determine if

one processing method is significantly better than another method.

Using the within class sum of squares to compare how well data

are clustered has appeared before in the literature. For instance,

Kaufman and Rousseeuw [12] use within class sum of squares

(which they refer to as WCSS) as a tool to aid in the decision of the

number of clusters that should be used for k-means clustering, and

which Giancarlo et al [13] show to be a reasonable method for

choosing k. Additionally, Calinski and Harabasz [14] proposed a

method based on within and between class sum of squares that was

repeatedly shown to perform well for choosing k. However, because

neither method is standardized, they are only able to be used to

compare the effectiveness of clustering methods when the total sum

of squares is constant. Thus, they are used in choosing the best k and

the best way to cluster the data, and are not able to compare the

effectiveness of clustering on two different methods/platforms when

the processed data given by those methods are on different scales

(have different total sum of squares). To our knowledge, there are no

methods currently in the literature that are able to address the

variety of problems that SWISS is able to. SWISS can operate on

different distance metrics. Here, we evaluate SWISS scores using

Euclidean distance, which has been shown to be a reasonable way to

evaluate the clustering of microarray data [15].

There are several advantages of SWISS. As previously

mentioned, because we are standardizing the within class sum of

squares by dividing by total sum of squares (giving a value between

zero and one), SWISS can be used to compare methods that are

on different scales. For example, different scales can arise from

differing normalization methods or when comparing different

platforms. Another advantage is that SWISS can be used to

compare methods that have different dimensions. This can be

useful when comparing the same biological samples, but using two

different gene sets. Finally, because the permutation test reports a

p-value, we are able to decide which processing method is

preferred without relying on subjective evaluation.

Experimental Application I: Two-Color versus One-Color
Microarrays

We will use SWISS to evaluate the one-color versus two-color

microarray problem. Two-color gene expression array assays are

among the most common genomic profiling tools currently in use

[16–19]. Two-color array technologies rely on labeling two samples

(such as tumor vs. normal or experimental vs. reference) with different

fluorochromes (such as Cy3 and Cy5) followed by co-hybridization to

the same chip-based assay [20]. The most compelling of reported

incentives for the co-hybridization strategy has been to control for

technical variability in array manufacturing [21]. Considering

relative fluorescence (such as a log-ratio), particularly to a common

reference such as a cell line reference hybridized on the same array,

provides a robust normalization technique to control for such

manufacturing variability [22]. A two-color array with a common

reference such as a cell line will be referred to as a ‘‘reference design’’.

A one-color array or a two-color array using only one signal channel

will be referred to as a ‘‘single-channel design’’.

The reference design, while powerful, has its disadvantages [16];

notably, 50% of the measurements in a reference design experiment

are solely for normalization purposes representing both significant

financial and opportunity costs. Additionally, there is an effective

doubling in measurement error by the reference design because every

ratio includes error contributions from both experimental and

reference channels [16,19]. Furthermore, genes that are biologically

absent or expressed at very low levels in the reference sample are

sometimes excluded from consideration even if present at high levels

in the experimental sample, which likely reduces the information

content of the experiment. In contrast to the two-color arrays, one-

color arrays do not rely on experimental normalization such as that

described for the reference design, but rather computation techniques

to normalize fluorescence intensities across arrays. Historically, the

distinction between the one and two-color platforms has been viewed

primarily in terms of the technology underlying the manufacturing

and experimental protocols of the array platform [20].

There are many aspects to comparing one-color versus two-color

arrays. First, there is the underlying experimental question of

whether it is more advantageous to use a one-color or two-color

array. Second, there are questions of which normalization should be

used when comparing different platforms. Finally, there is the

decision of which samples and which genes should be included in the

analysis. We will address the above issues using our SWISS method.

Experimental Application II: Direct Comparison of
Commercial Microarray Platforms

The MicroArray Quality Control (MAQC) project was initiated

to address concerns over the reliability of microarrays. In this

project, gene expression levels were measured from two high-

quality distinct RNA samples on seven microarray platforms

(although here we only consider Affymetrix and Agilent). Each

microarray platform was deployed at three independent test sites

and five replicates were assayed at each site. This experimental

design and the resulting datasets provide a unique opportunity to

assess the repeatability of gene expression microarray data within a

specific site, the reproducibility across multiple sites, and the

comparability across multiple platforms [23].

We will use SWISS to address some of the issues raised by the

MAQC project. Specifically, we will compare one-color Agilent

microarrays, two-color Agilent microarrays, and Affymetrix micro-

arrays by measuring how well replicates of the same samples cluster

together. We will also compare Affymetrix pre-processing methods

RMA [24] and the Affymetrix Micro Array Suite 5.0 (MAS 5.0) [25].

Experimental Application III: RNA-Seq versus Gene
Expression Microarrays

Microarrays have been the technology of choice for large scale

studies of gene expression. However, array technology has its
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limitations. First, each microarray can only provide information

about the genes that are included on the array. Second, there are

multiple sources of variability such as differences in arrays, dye

labeling, efficiency in reverse transcription, and hybridization [26].

Additionally, hybridization results from one sample may not

provide a reliable measure of the relative expression of different

transcripts [27]. Sequencing based approaches, such as RNA-Seq,

have the ability to overcome these limitations. We will use SWISS

to compare a single Agilent microarray to one lane of RNA-Seq.

Materials and Methods

Standardized WithIn class Sum of Squares (SWISS)
Let Yij be a d-dimensional vector of covariates (such as gene

expression) of the j th observation j~1,2, . . . nið Þ from the i th class/

phenotype i~1,2, . . . Kð Þ. Let N~
PK

i~1 ni be the total sample

size, Y be the d-dimensional overall mean of all N samples, and Y i

the mean of class i. Following classical statistical ANalysis Of

VAriance (ANOVA) ideas, the Total Sum of Squares (SST) is

defined to be

SST~
XK

i~1

Xni

j~1

Xd

m~1
Yij mð Þ{Y mð Þ
� �2

,

and the Total WithIn class Sum of Squares (Total WISS) is

Total WISS~
XK

i~1

Xni

j~1

Xd

m~1
Yij mð Þ{Y i mð Þ
� �2

:

Then the Standardized WithIn class Sum of Squares (SWISS),

which is the proportion of variation unexplained by clustering, is

defined as

SWISS~
Total WISS

SST
:

Suppose we have two processing methods (such as normaliza-

tion techniques) that we are interested in comparing on the same

dataset with pre-defined classes or phenotypes (such as tumor/

normal). We consider Method A to be ‘‘better’’ than Method B if

each of the classes of Method A have ‘‘tighter’’ clusters and/or

have larger distances between the classes than Method B. When

this occurs, SWISS will report a lower score for Method A. This is

shown by a 2-dimensional toy example with two phenotypes in

Figure 1. The processing method of Figure 1A (which we will refer

to as Method A) is ‘‘better’’ than the method of Figure 1B (Method

B) because the two classes (denoted by different colors and

symbols) have better separation, and hence, there is a lower

SWISS score. Notice that the axes are the same for plots A–C in

Figure 1. When comparing the clustering of the methods shown in

Figures 1A and 1C (Methods A and C), we cannot simply compare

within class sum of squares because the datasets are on different

scales. However, once we standardize the within class sum of

squares, the SWISS scores have the same scale and are

comparable. Therefore, we are still able to compare SWISS

scores between plots A–C. Because the SWISS score of Method C

is lower than the SWISS score of Method A, we can conclude that

Method C is preferred over Method A.

However, suppose the investigator has a preference for using

Method A. For example, Method A may be easier to implement,

or may be more cost effective, as is the case when considering

whether one-color arrays perform as well as two-color arrays. To

answer the question of whether the difference between the SWISS

scores of Methods A and C is statistically significant, we developed

a permutation test based on SWISS. This permutation test is

described in detail in Text S1 in the supporting information

section. Two p-values will be reported (one for each method), and

we will conclude that Method C is significantly better than

Method A if the SWISS score for Method C is smaller than for

Method A, and both reported p-values are less than 0.05.

Figure 1D shows the SWISS permutation test comparing

Methods A and C. The SWISS scores of both methods are shown

at the top left of the plot. The x-axis shows the range of SWISS

scores, and the red and blue vertical lines show the SWISS scores

of Method A and Method C, respectively. The black dots show the

distribution of the permuted population of SWISS scores (with

random heights), and the black line shows a smooth histogram of

these black dots. The p-values are calculated by taking the

proportion of permuted SWISS scores to the left of Method C’s

SWISS score (or the smaller SWISS score of the two methods

being compared), and the proportion to the right of Method A’s

SWISS score (the larger SWISS score of the two methods). Since

both p-values are less than 0.05 and Method C has a smaller

SWISS score, we conclude that Method C is significantly better

than Method A.

R and Matlab code for calculating SWISS and performing the

corresponding permutation test are available at http://cancer.

med.unc.edu/nhayes/pubs.html.

Microarray Experiments, Data Collection and Processing:
Experimental Application I

Description of the four cases used in Experimental

Application I. We analyzed four cases of microarray

experiments likely to represent the diversity of data presented in

a typical microarray-intensive laboratory (Table 1). The cases

included two different technologies; i) an early generation spotted

cDNA array (dataset I) and ii) inkjet-printed long oligonucleotide

arrays (datasets II–IV). Within the inkjet technology we included

an older 22K Agilent oligonucleotide array platform (dataset II),

and one of the company’s most current platforms, the 4644K

Agilent oligonucleotide array (dataset III). Experiments on all

three platforms were done using a reference design approach. The

signal intensities from the Cy5-labeled experimental channel

were taken as the estimation of single-channel design signals.

In addition, we also carried out an experiment of self-self

hybridization on the 4644K oligonucleotide array (dataset IV).

For the purpose of compatibility, both datasets I and II

contained breast cancer samples and both datasets III and IV

contained head and neck squamous cell carcinoma (HNSCC)

samples. These sample sets were selected based on the availability

of distinct phenotypes of approximately equal prevalence. The

phenotypes were estrogen receptor positivity/negativity for the

breast cancer samples and tumor/normal for the head and neck

cancer samples. Datasets I-II were existing data previously

reported [28,29] and datasets III and IV were generated for this

study.

Data collection. The gene expression data of two breast

cancer datasets (I [29] and II [28]) were obtained from the UNC

Microarray Database (https://genome.unc.edu/). Dataset II is also

available under the GEO accession number GSE1992. The image

files of dataset I were analyzed by using a ScanArray 3000 (General

Scanning, Watertown, MA) or a GenePix 4000 (Axon Instruments,

Foster City, CA) scanner and the primary data tables and the image

files were originally stored in the Stanford Microarray Database

(http://smd.stanford.edu//) [29]. The image files of dataset II were

analyzed with GenePix Pro 4.1 [28]. The net-mean signals of Cy3
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and Cy5 channels for datasets I and II were loaded into the UNC

Microarray Database where a loess normalization procedure was

performed to adjust between the two channels. Log-ratios of the

Cy5-labeled (experimental sample) over the Cy3-labeled (reference

sample) signals were obtained as gene expression measures for the

reference design. The signal intensities from the Cy5-labeled

experimental channel were obtained as the gene expression

measure of the single-channel design method (datasets I and II).

Microarray experiments. As novel experiments in this

study, we selected eight HNSCC tumor samples and eight

normal tonsil samples collected on an IRB-approved protocol

from patients treated at our institution. RNA isolation and

microarray protocols were carried out as described in Hu et al [30].

Agilent Feature Extraction (FE) software [31] was used to analyze

image files, extract signals and flag unreliable probes. These new

data have been deposited into the Gene Expression Omnibus

(GEO) under the accession number of GSE13398 and GSE13397.

Reference and Single-channel design data processing.

Prior to log-ratio transformation, signal intensities of Cy5-labeled

experimental channel and Cy3-labeled reference channel were

background corrected and loess normalized between the two

channels for dye-bias correction [32]. The normexp +offset

method described in Ritchie et al [9] for background correction

was implemented using the R package limma [33]. All features on

the arrays were included. The background-corrected data then

underwent a within array loess normalization and the log-ratio

values of the normalized data were used as the signals of the

reference design. The background-corrected experimental channel

data were logarithm-transformed and then loess normalized across

arrays. The normalized values were used as the signals of the

single-channel design.

In our lab, as in many labs, Cy5 has historically been used for

the experimental channel and Cy3 for the reference channel.

Therefore, in these retrospective analyses, Cy5, by default, is the

Figure 1. Toy example demonstrating how SWISS measures clustering. Two-dimensional toy example, with the same axes in plots A–C. The
two classes are distinguished by different colors and symbols. Suppose that the same dataset has been processed using three different methods, with
the processed data shown in A–C. This toy example demonstrates that data that are clustered better (A and C) have a lower SWISS score than data
where there is not much separation between classes (B). This also shows that SWISS scores can be compared even when the data are on different
scales (A vs. C). Plot D shows the SWISS permutation test of the data shown in plots A and C. This plot shows the distribution of the permuted
population of SWISS scores (black dots), summarized by a smooth histogram (black curve), along with the SWISS scores of Method A (red vertical line)
and Method B (blue vertical line). The SWISS scores and corresponding empirical p-values are also reported. Because both p-values are less than 0.05,
we conclude that the processing method shown in C is significantly better than the processing method shown in A.
doi:10.1371/journal.pone.0009905.g001
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single-channel signal. Many investigators will be familiar with

research suggesting that Cy3 is preferable due to its more

favorable stability properties and this should be considered for

any single-channel experiments planned as a result of the

retrospective analysis [34].

Cluster Analysis. We first filtered the datasets down to

approximately 10% of total genes (800 genes for dataset I, 2000 for

dataset II, and 4000 for dataset III) based on Median Absolute

Deviation (MAD). We then clustered the datasets using Consensus

clustering [35] based on Pearson correlation distances with the

ConsensusClusterPlus [36] function from BioConductor.

Microarray Experiments, Data Collection and Processing:
Experimental Application II

Data collection and processing. The Agilent and Affymetrix

array data (datasets V – VII) were obtained from the MAQC website

(http://edkb.fda.gov/MAQC/MainStudy/upload/). Four different

samples were assayed on these platforms. The two RNA sample

types used were a Universal Human Reference RNA (UHRR) from

Stratagene and a Human Brain Reference RNA (HBRR) from

Ambion. Sample A was 100% UHRR; Sample B 100% HBRR;

Sample C 75% UHRR and 25% HBRR; Sample D 25% UHRR

and 75% HBRR. The two-color Agilent arrays only used samples A

and B.

The Affymetrix experiments (dataset V) were carried out at six

separate test sites (we only use data from the first two test sites) with

each site processing five replicate assays on each of the four

samples for a total of 40 microarrays. The Agilent one-color

experiments (dataset VI) were carried out at three separate test

sites (we only use test site 2) with each site processing five replicate

assays on each of the four samples for a total of 20 microarrays.

The Agilent two-color experiments (dataset VII) were carried out

at three separate test sites (we only use test site 2) with each site

processing five replicate arrays on each of the two samples (A and

B) for a total of 10 microarrays. For more information about the

experiments, see Shi et al [23].

For dataset VI, we obtained the normalized data, which was

transformed by setting all measurements less than 5.0 to 5.0. All

data points were median scaled to 1 using the median signal

intensity value for data points labeled as present. For dataset VII,

we obtained the normalized log ratio data, which defined the log

ratio as CH1/CH2 (Cy3/Cy5) where the Cy3 and Cy5 channel

intensities were background-subtracted. Data were extracted using

Agilent’s Feature Extraction software, version 8.5. Only MAQC

samples A and B were used in Agilent two-color experiments.

For dataset V, we obtained both the normalized and raw CEL

files. For the comparison of Affymetrix and Agilent platforms, we

used the normalized data from test site 2, which was normalized

using PLIER [37]. An offset value of 16 was then added to each

probeset-level data point. For the analysis of different Affymetrix

pre-processing methods, the raw CEL file data from test site 1

were then analyzed with BioConductor to generate probeset

level data using the rma and mas5 functions in R [38].

Probe-level data were first quantile normalized before applying

each function.

Microarray Experiments, Data Collection and Processing:
Experimental Application III

Microarray data quantification and processing. Micro-

array experiments (dataset VIII) were performed with custom

UNC Agilent two-channel microarrays. After hybridization, the

arrays were scanned by Axon GenePix 4000B scanner (Axon

Instruments, Foster City, CA). The images were analyzed using

Gene Pix Pro 5.0 software (Axon Instruments, Foster City, CA).

These data have been deposited into the Gene Expression

Omnibus (GEO) under the accession number of GSE20234.

Table 1. Description of the datasets/cases used in this study.

Experimental
Application Dataset Tumor Type Array Platform

Hybridization
Method

Number of
Arrays Used Phenotype Reference

I I Breast cancer Spotted cDNA arrays
(svcc-8k)

Reference design 39 Estrogen receptor
(ER) status

[29]

II Breast cancer Agilent 22K custom
oligonucleotide arrays

Reference design 52 Estrogen receptor
(ER) status

[28]

IIIa HNSCCc Agilent 4644K
oligonucleotide arrays

Reference design 16 Tumor/Normal

IVb HNSCCc Agilent 4644K
oligonucleotide arrays

Self hybridization 16 Tumor/Normal

II V (Affymetrix) UHRR and HBRRd Affymetrix HG-U133
Plus 2.0 Gene Chip

Reference design 40 Samples A-De [23]

VI (Agilent one-color) UHRR and HBRRd Agilent Whole Human
Genome Oligo Microarray,
G4112A

One-color design 20 Samples A-De [23]

VII (Agilent two-color) UHRR and HBRRd Agilent Whole Human
Genome Oligo Microarray,
G4112A

Two-color design 10 Samples A,Be [23]

III VIII (Microarray) Breast cancer UNC custom Agilent
two-color microarray

Reference design 8 Basal/Luminal

IX (RNA-Seq) Breast cancer Illumina Genome
Analyzer II

RPKM normalized
sequence tags

8 Basal/Luminal

a,bDatasets III and IV contain the same clinical samples that were hybridized using different array designs.
cHead and Neck Squamous Cell Carcinoma.
dUniversal Human Reference RNA (UHRR) and Human Brain Reference RNA (HBRR).
eSample A = 100% UHRR; Sample B = 100% HBRR; Sample C = 75% UHRR, 25% HBRR; Sample D = 25% UHRR, 75% HBRR.
doi:10.1371/journal.pone.0009905.t001
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Gene expression values were quantified by the two based log

ratio of red channel intensity (mean) vs. green channel intensity

(mean), followed by loess normalization to remove the intensity-

dependent dye bias [32]. We used UNC Microarray Database

(https://genome.unc.edu/) to perform the filtering and pre-

processing. The data matrix was gene median centered and

sample standardized. Missing data were imputed with 10-nearest-

neighbor imputation [39]. If the intensity of one probe in one

array is less than 10 in the green channel or in the red channel, the

expression of that probe in that array is excluded for further

analysis. If a probe has more than 35% of expression values

missing in all the arrays (due to low intensities or bad flags), the

expression of that probe for all the arrays is excluded for the

further analysis.

RNA-Seq data quantification and processing. mRNA was

prepared from each experimental sample and the standard RNA-

Seq sequencing process (dataset IX) was carried out with Illumina

Genome Analyzer II. Raw short read (36 bp) sequence tags were

pre-filtered according to manufacture recommended error rate.

Pre-processed short read sequences were aligned using MAQ [40]

to human refseq database [41] based on NCBI build 36.1. Up to

two mismatches were allowed in the alignment. RPKM [42] was

computed for each human transcript (existed in human refseq

database as of February 18th, 2009) on the isoform level using the

equation RPKM = 1096C/(NL), where: C is the number of reads

that mapped to a transcript, N is total number of mappable reads

in the experiment, and L is the length of the transcript. The

average of RPKM for all isoforms within a gene locus was

computed and used to represent the quantity of the genes

expressed in the cell. Logarithm (base 2) transformation was

applied on each RPKM value on the gene level. A link to this data

has been provided in the Gene Expression Omnibus (GEO) under

the accession number of GSE20234.

Common gene list. The 1541 genes used in this study came

from four published intrinsic gene lists [28,29,43,44] that were also

present in both datasets VIII and IX.

Results

Experimental Application I: Two-Color versus One-Color
Microarrays

Comparison of Single Channel Normalization Methods.

SWISS can be applied to compare different normalization

techniques on a dataset. We compared loess and quantile

normalizations along with the raw expression data for the single

channel design after performing background correction. The

results of the analysis for dataset II are shown in Figure 2, where

SWISS scores were calculated for each normalization method. We

varied the number of genes that were filtered in our analysis. For

each normalization method, filtering was based on gene variance

across arrays. It is possible that for a fixed number of genes,

different genes were compared across different normalization

methods since normalization may have affected gene variation

across arrays. It can be seen that for each fixed number of genes,

quantile and loess normalization were both superior to the

raw data (because they have lower SWISS scores), and that

loess normalization performed slightly better than quantile

normalization.

This does not show that loess normalization is the optimal

normalization method for Agilent single channel array data. There

are other single channel normalization methods not considered

here, such as normalization based on principle component analysis

[45]. However, based on the normalization methods we

considered in this analysis and in the absence of an obvious

standard, we decided to normalize the single channel data using

loess normalization for the rest of our analyses in Experimental

Application I.

Comparison of Reference and Single Channel Designs:

Experimental Normalization. For datasets I – III, we

performed our SWISS permutation test on the full gene set to

test whether there was a significant difference in the clustering

capabilities of the reference design versus the single channel

design. If both reported p-values were less than 0.05, we concluded

that the design with the lower SWISS was significantly better.

Otherwise, we concluded that there was no significant difference

between the reference and single channel designs. Figure 3 shows

the results of the test.

For dataset I, we see that the reference design and single

channel design have p-values of 0 and 0.01, respectively. Because

the reference design has a smaller SWISS score of 0.94, we

conclude that the reference design is significantly better at

clustering the data of different ER status (positive vs. negative)

than the single channel design. This is not surprising because

dataset I used older generation spotted cDNA arrays. Thus, the

two-color reference design is absolutely necessary in this case.

For dataset II, which used Agilent 22K custom oligonucleotide

arrays, the reference design has a lower SWISS score of 0.91. Its p-

value is 0.02, and the single channel design has p-value 0.03.

Because both p-values are less than 0.05, we conclude that the

reference design is significantly better than the single channel.

However, both p-values are larger than the p-values for dataset I.

Therefore, the difference between the reference and single channel

designs is not as strongly significant for dataset II as for dataset I.

Dataset III used Agilent 4644K oligonucleotide arrays. Because

the p-values of the reference and single channel designs are both

0.26, we conclude that there is no significant advantage to using

the reference design over the single channel design. Thus, we

confirmed results suggested by other investigators that high-quality

Figure 2. Normalization of single channel design, dataset II.
Comparison of SWISS scores of three different normalization techniques
for the single channel of dataset II. The number of genes was varied, as
shown by the x-axis. Genes were filtered for each normalization method
based on gene variation, keeping the genes with the largest variation.
The normalization techniques being compared are loess (solid blue),
quantile (dashed green), and no normalization (dot-dashed red). This
shows that for each fixed number of genes, quantile and loess
normalization are both superior to no normalization, and that loess
normalization performs slightly better than quantile normalization.
doi:10.1371/journal.pone.0009905.g002
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commercial two-color arrays are available that do not benefit in a

significant manner from the normalization offered by a reference

channel [46].

An important question regards the biological significance of a

difference between SWISS scores. The answer will differ for each

dataset, but one possible solution to this question is to introduce a

perfect-feature gene. For each class, find the average of each gene

across all samples within the specified class. Each sample in the

specified class is assigned the maximum of these gene averages for

its value of the perfect-feature gene, and each sample not in the

specified class is assigned the minimum of the averages. There are

as many perfect-feature genes as classes. Add all of the perfect-

feature genes to the dataset then recalculate the SWISS score

(which we will call the perfect-feature enhanced SWISS score). A

perfect-gene approaches the smallest biologic quantity for which

there is clearly a biologic interest and we can calculate the impact

of adding such a feature to the dataset on the SWISS score. We

can then use the SWISS score with and without a perfect-feature

gene to assess the biologic significance relative to any statistically

significant comparisons observed in an experiment. For example,

for dataset I, the original SWISS scores of the single channel and

reference designs are 0.958 and 0.943, respectively (shown in

Figure 3A). The perfect-feature enhanced SWISS score of the

single channel design is 0.954. Because the SWISS score of the

reference design is smaller than the perfect-feature enhanced

SWISS score of the single channel, we conclude that the difference

in SWISS scores between the single channel and reference designs

of dataset I is not only statistically significant but also biologically

meaningful. We do caution that this perfect-feature gene approach

is sensitive to the amount and type of gene filtering.

In each of the previous analyses, the classes used were ‘‘true’’

phenotype classes. We were also interested in seeing how using

unsupervised methods to determine classes would change the

results. We applied standard hierarchical clustering techniques.

Supplementary Table S1 shows the results of the clustering and

Table S2 shows the SWISS scores of datasets I – III, for both the

phenotype and the Consensus clustering classifications. The

SWISS scores, when using the Consensus clustering classifications,

Figure 3. SWISS permutation test results, datasets I–III. SWISS hypothesis test results for datasets I–III (A–C). Each plot shows the distribution
of the permuted population of SWISS scores (black dots), summarized by a smooth histogram (black curve), along with the SWISS scores of the
reference design (red vertical line) and single channel design (blue vertical line). When both p-values are less than 0.05 (as in A and B), we conclude
that the method with the smaller SWISS score (the reference design in A and B) is significantly better than the other method (the single channel
design). However, if either p-value is greater than 0.05 (as in C), we conclude that there is no significant difference between the reference and single
channel designs.
doi:10.1371/journal.pone.0009905.g003
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were always smaller than the SWISS scores based on phenotype

classification. This is not surprising; we expect that Consensus

clustering would classify samples close to each other in gene

expression space as SWISS is designed to measure. For both the

single channel and reference designs for datasets I and III, the

difference between phenotype and clustering SWISS scores is not

significant. However, for both the single channel and reference

designs for dataset II, Consensus clustering gives a significantly

lower SWISS score than the phenotype SWISS score. This

provides evidence that either some of the breast cancer samples of

dataset II may have been mislabeled with respect to their ER

status or that a two class unsupervised clustering does not

adequately capture the biology of ER status.

Feature Selection: Evaluating the Effect of Filtering. For

our next analysis, we used SWISS to evaluate the effect of different

types of and amounts of gene filtering. For each dataset (I – IV),

we filtered the gene set by keeping the genes with the largest

variances. We calculated SWISS scores starting with only 16 genes

and ending with all genes included. Note that for each dataset, the

gene lists of the reference and single channel designs were decided

independently, and thus the gene sets may not be identical. For

dataset IV, we calculated SWISS scores for the self-self

hybridization experimental Cy3 and Cy5 channels, along with

the average of those two channels. Figure 4 shows the results. For

datasets I – III, we also show the 90% confidence interval (black

bars) from the SWISS hypothesis test.

For dataset I (Figure 4A), we see that the reference design

always has a lower SWISS score, and that the reference design is

always statistically better than the single channel design (because

the red and blue curves always lie outside of the 90% confidence

interval). For dataset II (Figure 4B), even though the reference

channel always has a lower SWISS score than the single channel

Figure 4. Effect of filtering genes by variance, datasets I–IV. SWISS scores for the reference design (solid red) and single channel design
(dashed blue) along with corresponding 90% confidence intervals (black bars) calculated from the SWISS permutation test are shown for datasets
I – III (A – C). The SWISS scores for the self-self hybridization Exp-Cy3 channel (dot-dashed green), Exp-Cy5 channel (solid red), and the average of the
two self-self hybridization channels (dashed blue) are shown for dataset IV (D). In A (dataset I), the reference design is always significantly better than
the single channel design (because the black bars are always inside the blue and red curves). However, in B and C (datasets II and III), there are certain
gene sets where there is a significant difference between the two designs and other gene sets where there is no significant difference. In D, there is
very little difference between each of the two experimental channels and the average of the two channels.
doi:10.1371/journal.pone.0009905.g004
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design, it is not always significantly better. In fact, the two methods

are almost statistically equivalent once we include at least 256

genes. Therefore, as long as more than 256 genes are used, the

single channel design is as effective as the reference design. For

dataset III (Figure 4C), the reference and single channel designs

are statistically equivalent at the beginning (for 16 genes) and end

(for at least 256 genes). However, there are gene filterings where

the reference design becomes statistically better than the single

channel design. This effect demonstrates that the selected gene set

plays a significant role in comparing the performance of the single

channel and reference designs.

For dataset IV (Figure 4D), the self-self hybridization Cy3

channel, Cy5 channel, and average of the two channels appear to

perform equivalently in terms of SWISS scores. The SWISS

permutation test can only be used to test for a significant difference

between two methods, and here we are trying to compare three

different methods. We did perform the permutation test on all

pairs and filterings, and all of these tests returned insignificant p-

values. Therefore, there is no significant difference between either

of the single channels or the average of the two channels. For this

reason, we did not include confidence intervals in Figure 4D.

However, we notice that once we include about 1000 genes, the

average of the two channels has a slightly lower SWISS score,

although not significantly lower. When including all genes in our

analysis, the SWISS scores for the Cy3 channel, Cy5 channel, and

average of the two channels are 0.8564, 0.8558, and 0.8551,

respectively. This analysis suggests that there may be some small

potential for improvement over the single channel design by

measuring the same biological sample in both the Cy3 and Cy5

channels and combining the data in some way. This may be a

reasonable method for improving data quality without increasing

costs, as this experimental set-up requires the same number of

arrays as the reference design.

Notice that in Figure 4B, as the number of genes increases, the

SWISS scores also increase. This suggests that the lower variable

genes contain little useful phenotypic information. The curves in

Figures 4C and 4D are similar to each other in shape, where they

begin by increasing, then decrease for a while, then increase again

at the end. This suggests that there are a small number of genes

that do a reasonable job of reflecting the difference in phenotypes.

Then, as we add up to 256 genes, the SWISS scores increase,

which is consistent with these genes adding more noise than

phenotypic information. The decrease in the middle of the curves

could be a result of additional genes that can be added to the gene

set that increase the distance between phenotypes. The final

increase is most likely due to adding genes that are pure noise to

the analysis. The curves in Figure 4A have a distinct shape, with

one curve always increasing, and the other curve almost always

decreasing. Our next analysis investigates why these two curves

have such different shapes.

Feature Selection: Comparing Identical Gene Sets.

Figure 4 compares the SWISS scores of the reference and single

channel designs when we filter by gene variance across all arrays.

As previously noted, we may have been comparing different gene

sets because the most variable genes in the reference design did not

necessarily coincide with the most variable single channel design

genes. We decided to compare the reference and single channel

designs using the same gene sets. Figure 5 shows this comparison

for dataset I, along with the corresponding 90% confidence

intervals from the permutation test. Figure 5A compares the two

designs using the most variable genes from the single channel

design, and Figure 5B uses the most variable genes from the

reference design. Note that the blue dashed line (single channel

design) from Figure 5A and the solid red line (reference design)

from Figure 5B are the same lines shown in Figure 4A.

Remember that in Figure 4A, the reference design was always

significantly better than the single channel design. However, in

Figures 5A and 5B, there are gene filterings where there is no

significant difference between the two designs. This is especially

apparent in Figure 5B, where there is no significant difference

between the reference and single channel designs until at least

1000 genes are included. Also, both the red and blue curves in

Figure 5. Feature selection: comparing identical gene sets, dataset I. The SWISS scores for the reference design (solid red) and single channel
design (dashed blue) along with corresponding 90% confidence intervals (black bars) calculated from the SWISS permutation test are shown for
dataset I. The genes for both designs in A were filtered according to variance across all arrays in the single channel design, and the genes in B were
filtered according to variance across all arrays in the reference design. The SWISS scores in B are lower than those in A, which suggests that filtering
genes using the reference design is better than filtering genes using the single channel design. Also, there are gene filterings in both A and B where
there is no significant difference between the single channel and reference designs (both the red and blue lines lie inside the black bars).
doi:10.1371/journal.pone.0009905.g005
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Figures 5A and 5B have very similar shapes, as opposed to

Figure 4A where the curves had different shapes. From this, we

conclude that when comparing two different gene filterings, the

SWISS curves may have very different shapes (as in Figure 4A).

However, if we use the same gene sets on both curves, the SWISS

curves should have very similar shapes (as in Figure 5).

When comparing Figure 5A with 5B, notice that the SWISS

scores in 5B are always less than or equal to the SWISS scores in

5A. This implies that the filtering method determined by choosing

the most variable genes in the reference design is superior to

choosing the most variable genes in the single channel design. We

conclude that for dataset I, we need the reference design when

filtering genes by variation across arrays, but once we have

selected the gene set, the single channel design is statistically

equivalent to the reference design for up to 1000 genes.

Experimental Application II: Affymetrix versus Agilent
Microarray Platforms

Comparison of Affymetrix Pre-Processing Methods.

Similar to comparing different normalizations of the single

channel design in the first experimental application, we use

SWISS to compare two different Affymetrix pre-processing

methods: RMA and the Affymetrix Micro Array Suite 5.0 (MAS

5.0). Arrays from test site 1 (n = 20) were analyzed. This eliminated

the need for any intrasite adjustment. The SWISS scores of RMA

and MAS 5.0 processed data are 0.06 and 0.48, respectively. The

difference between these scores is statistically significant. This

result is consistent with the results of Millenaar et al [47] who

conclude that after comparing six different algorithms (including

MAS 5.0), RMA gave the most reproducible results.

Evaluating the Effect of Affymetrix and Agilent Intersite

Reproducibility. We now use SWISS to compare the intersite

reproducibility of the Affymetrix, Agilent one-color, and Agilent

two-color microarray platforms (datasets V – VII). For this ex-

ample, a low value of SWISS would mean that the sample

replicates lie very close to each other in d-dimensional space.

There was only one site (test site 2) common between all three

platforms under consideration, the U.S. Food and Drug

Administration (FDA), and hence we only consider data from

this site. Because only two of the four samples (samples A and B)

were assayed on the Agilent two-color microarrays, we only

consider all four samples when comparing Affymetrix with Agilent

one-color microarrays.

When considering all four samples, Affymetrix has a SWISS

score of 0.01, which is significantly lower than the Agilent one-

color SWISS score of 0.36. When considering only samples A and

B, the SWISS scores are 0.007 for Affymetrix, 0.18 for Agilent

one-color, and 0.80 for Agilent two-color. All of the pair wise tests

between the three platforms return significant p-values, as shown

in Supplementary Figure S1. From this analysis, we can conclude

that in the MAQC dataset, Affymetrix platform is the best

platform in terms of intersite reproducibility, followed by Agilent

one-color, with Agilent two-color platform in third position. In this

example, we have confirmed, using objective and hypothesis-

driven techniques, the conclusion reached by Shi et al [23] using a

more qualitative approach.

Experimental Application III: RNA-Seq versus Gene
Expression Microarrays

For our final application, we use SWISS to compare the

performance of a single Agilent two-color array with one lane of

RNA-Seq (datasets VIII and IX). Samples were classified by their

biological phenotype, either Basal or Luminal. The SWISS scores

for RNA-Seq and the microarray data were both 0.63 (as shown in

Figure 6). From this analysis, we conclude that there is no

significant difference between one lane of RNA-Seq and a single

Figure 6. SWISS permutation test results, Experimental Application III. SWISS hypothesis test results for Experimental Application III.
Because both p-values are greater than 0.05, we conclude that there is no significant difference between a single Agilent two-color microarray and
one lane of RNA-Seq.
doi:10.1371/journal.pone.0009905.g006

SWISS MADE

PLoS ONE | www.plosone.org 10 March 2010 | Volume 5 | Issue 3 | e9905



Agilent microarray. This result is consistent with the findings

of Marioni et al [27], who found one lane of RNA-Seq to be

comparable to a single Affymetrix microarray.

Discussion

We have presented a simple statistical tool, SWISS, which can

be used to measure how effectively data are clustered into given

phenotypes/classes. Because SWISS is a standardized value, its

scores can be compared across different gene spaces. We also

presented a permutation-based hypothesis test that reports a p-

value which allows investigators to test whether two methods

applied to the same dataset are equivalent, or if one method does a

better job of clustering the data. SWISS can be used to answer

questions related to experimental processing, computational

processing, and feature selection.

In the current manuscript we present an initial exploration of

three applications to illustrate the potential range of problems for

which SWISS might be considered. In Experimental Application

I, we used SWISS to address the one-color versus two-color

microarray problem on a variety of levels. First, we looked at

normalization techniques for single channel data, where SWISS

provided a convenient method to compare different normaliza-

tions. Second, we showed that SWISS is a convenient tool for

comparing different versions of arrays for experimental normal-

ization. Third, we used SWISS to evaluate the impact of feature

selection on different platforms. In Experimental Application II,

we used SWISS to compare two different microarray platforms,

Affymetrix and Agilent, as well as competing Affymetrix pre-

processing methods. A particular strength of SWISS’s use of

standardized Euclidian distance between samples and clusters

(noting that other measures may substitute for distance) is that

comparisons across platforms are directly interpretable. Compet-

ing approaches to SWISS for cross-platform technology compar-

isons frequently rely on transformations of the data to render

competing platforms similar in their component elements. Such

decisions such as gene filtering and cross-platform gene annotation

may influence the interpretation of the results, as we document in

Figure 4. Depending on which set of filtered genes are used, an

investigator may reach different conclusions about the superiority

of a platform. More troubling, the set of assumptions, such as

filtering, may be based on the performance of those genes in one

platform over the genes that might have been chosen by the other,

ultimately biasing the analysis to favor a potentially spurious result.

While SWISS does not necessarily account for the full range of

potential biases, it does allow for decisions about data transfor-

mations such as gene filtering to be made independently for each

data source. Finally, in Experimental Application III, we used

SWISS to compare two different gene expression technologies:

NextGen sequencing and microarrays, a timely problem with few

obvious existing methods in the literature. We showed that one

lane of RNA-Seq is statistically equivalent to a single gene

expression microarray in terms of how well biological phenotypes

cluster together. This observation is fundamentally important as

we look to the future of experimental design in this field.

We recognize that the examples we provide cover a wide range

of quantitative problems, and that in some cases a competing

method might be considered or may have previously been

suggested. In general, however, we have found that such

competing methods are either limited in the range of problems

which they address or subjective in their interpretation. For

example, in Experimental Applications II and III, our analyses

based on SWISS agreed with results found in the literature, such

as Affymetrix having the best intersite reproducibility [23] and one

lane of RNA-Seq being comparable to a single gene expression

microarray [27]. In order for these authors to make their

conclusions, they performed three or more different gene by gene

analyses. In contrast, we took a multivariate approach to the

problem by using SWISS. For example, Shi et al [23] draw their

conclusion that Affymetrix has the best intersite reproducibility by

comparing

N Coefficient of Variation (CV) of the quantitative signal values

between the intrasite replicates,

N Total CV of the quantitative signal, which included both the

intrasite repeatability as well as variation due to intersite

differences, and

N Percentage of the common genes with concordant detection

calls between replicates of the same sample type.

Also, Marioni et al [27] draw their conclusion that one lane of

RNA-Seq is comparable to a single Affyemetrix array by

comparing

N Counts of RNA-Seq with normalized microarray intensities,

N Estimated log2 fold changes, and

N Overlap between genes called as differentially expressed.

Most of their analyses relied on subjective cutoffs determined by

the author rather than on easily interpretable p-values. Addition-

ally, we are able to draw the same conclusions with only one

analysis based on our SWISS method (compared to three each).

While stressing the broad applicability of SWISS to a range of

analytical problems and the ease of its use, we would like to

acknowledge some important weaknesses as well. First, high-

dimensional data such as these array experiments are the product

of complex protocols and depend on the quality of reagents and

samples. Any change in upstream elements, such as a lab protocol

or normalization method, might influence the resulting SWISS

scores dramatically. For example, while we showed that the

SWISS score of the Affymetrix arrays was significantly lower than

the SWISS score of the Agilent arrays, this result is most

interpretable in light of the complex set of protocols that generated

the MAQC data and might not generalize to other labs or

samples. Additionally SWISS scores may not represent the only

criterion on which one method is preferred. For example, we

showed that RMA gives more reproducible results than MAS 5.0.

However, some investigators may prefer using MAS 5.0 because it

is more conservative, gives positive output values, down-weights

outliers, and minimizes bias [37].

We also acknowledge that while SWISS is convenient to

implement across a broad set of analyses, there are likely cases

where more dedicated methods would likely provide more

nuanced insights. For example, SWISS should not be the only

tool used when the investigator is interested in performing an in-

depth analysis of competing methods or platforms, such as

comparing a new normalization method with other established

normalization methods. We should also acknowledge that the

examples we have provided should be viewed with extreme

caution in terms of the potential to introduce bias. We have shown

examples in which one might be tempted to select what appears to

be optimal gene sets based on SWISS scores. This is not the

intention of the examples but rather to demonstrate the opposite:

to document the impact on SWISS scores by varying gene lists.

When approached with this caution in mind we feel that these

concerns are offset by the broad scope of applicability that our

SWISS method offers. Future work will address the concerns

about bias adjustment.
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We hope investigators will see many uses for SWISS when

considering competing processing methods or datasets for

evaluating complex multidimensional problems, and will consider

incorporating SWISS into their respective pipelines.
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