4,380 research outputs found

    Conformal mapping of ultrasonic crystals: confining ultrasound and cochlear-like wave guiding

    Full text link
    Conformal mapping of a slab of a two-dimensional ultrasonic crystal generate a closed geometrical arrangement of ultrasonic scatterers with appealing acoustic properties. This acoustic shell is able to confine ultrasonic modes. Some of these internal resonances can be induced from an external wave source. The mapping of a linear defect produces a wave-guide that exhibits a spatial-frequency selection analogous to that characteristic of a synthetic "cochlea". Both, experimental and theoretical results are reported here.Comment: 4 pages, 4 figure

    Nonlinear Schr\"odinger Equation with Spatio-Temporal Perturbations

    Get PDF
    We investigate the dynamics of solitons of the cubic Nonlinear Schr\"odinger Equation (NLSE) with the following perturbations: non-parametric spatio-temporal driving of the form f(x,t)=aexp[iK(t)x]f(x,t) = a \exp[i K(t) x], damping, and a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and energy, or, alternatively, a Lagrangian approach, we develop a Collective-Coordinate-Theory which yields a set of ODEs for our four collective coordinates. These ODEs are solved analytically and numerically for the case of a constant, spatially periodic force f(x)f(x). The soliton position exhibits oscillations around a mean trajectory with constant velocity. This means that the soliton performs, on the average, a unidirectional motion although the spatial average of the force vanishes. The amplitude of the oscillations is much smaller than the period of f(x)f(x). In order to find out for which regions the above solutions are stable, we calculate the time evolution of the soliton momentum P(t)P(t) and soliton velocity V(t)V(t): This is a parameter representation of a curve P(V)P(V) which is visited by the soliton while time evolves. Our conjecture is that the soliton becomes unstable, if this curve has a branch with negative slope. This conjecture is fully confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the soliton lives longer, the shorter the branch with negative slope is.Comment: 21 figure

    Analytical approach to soliton ratchets in asymmetric potentials

    Get PDF
    We use soliton perturbation theory and collective coordinate ansatz to investigate the mechanism of soliton ratchets in a driven and damped asymmetric double sine-Gordon equation. We show that, at the second order of the perturbation scheme, the soliton internal vibrations can couple {\it effectively}, in presence of damping, to the motion of the center of mass, giving rise to transport. An analytical expression for the mean velocity of the soliton is derived. The results of our analysis confirm the internal mode mechanism of soliton ratchets proposed in [Phys. Rev. E {\bf 65} 025602(R) (2002)].Comment: 9 figures. Submitted to Phys. Rev.

    Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor

    Full text link
    The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.Comment: 8 pages, 7 figures, 5 table

    Internal mode mechanism for collective energy transport in extended systems

    Get PDF
    We study directed energy transport in homogeneous nonlinear extended systems in the presence of homogeneous ac forces and dissipation. We show that the mechanism responsible for unidirectional motion of topological excitations is the coupling of their internal and translation degrees of freedom. Our results lead to a selection rule for the existence of such motion based on resonances that explains earlier symmetry analysis of this phenomenon. The direction of motion is found to depend both on the initial and the relative phases of the two harmonic drivings, even in the presence of noise.Comment: Final version, to appear in Physical Review Letter

    Abrupt field-induced transition triggered by magnetocaloric effect in phase-separated manganites

    Get PDF
    The occurrence at low temperatures of an ultrasharp field-induced transition in phase separated manganites is analyzed. Experimental results show that magnetization and specific heat step-like transitions below 5 K are correlated with an abrupt change of the sample temperature, which happens at a certain critical field. This temperature rise, a magnetocaloric effect, is interpreted as produced by the released energy at the transition point, and is the key to understand the existence of the abrupt field-induced transition. A qualitative analysis of the results suggests the existence of a critical growing rate of the ferromagnetic phase, beyond which an avalanche effect is triggered.Comment: 6 pages, 4 figures included. Acepted for publication in Phys. Rev.
    corecore