
Nonlinear Schrödinger equation with spatiotemporal perturbations

Franz G. Mertens
Physikalisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

Niurka R. Quintero
Departamento de Física Aplicada 1, E.U.P. Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain

A. R. Bishop
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 28 July 2009; published 20 January 2010�

We investigate the dynamics of solitons of the cubic nonlinear Schrödinger equation �NLSE� with the
following perturbations: nonparametric spatiotemporal driving of the form f�x , t�=a exp�iK�t�x�, damping, and
a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and
energy, or, alternatively, a Lagrangian approach, we develop a collective-coordinate-theory which yields a set
of ordinary differential equations �ODEs� for our four collective coordinates. These ODEs are solved analyti-
cally and numerically for the case of a constant, spatially periodic force f�x�. The soliton position exhibits
oscillations around a mean trajectory with constant velocity. This means that the soliton performs, on the
average, a unidirectional motion although the spatial average of the force vanishes. The amplitude of the
oscillations is much smaller than the period of f�x�. In order to find out for which regions the above solutions
are stable, we calculate the time evolution of the soliton momentum P�t� and the soliton velocity V�t�: This is
a parameter representation of a curve P�V� which is visited by the soliton while time evolves. Our conjecture
is that the soliton becomes unstable, if this curve has a branch with negative slope. This conjecture is fully
confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the
soliton lifetime: the soliton lives longer, the shorter the branch with negative slope is.
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I. INTRODUCTION

The nonlinear Schrödinger equation �NLSE� is one of the
paradigms of soliton physics, because it represents a com-
pletely integrable system and has very many applications in
practically all fields of physics, which are listed and dis-
cussed in several review articles�1–3�. For applications it is
important to study the perturbed NLSE

iut + uxx + 2�u�2u = R�u�x,t�;x,t� . �1�

Many different kinds of perturbations R have been consid-
ered and in particular the dynamics of a single soliton under
these perturbations was investigated �1,2�.

In nonlinear optics u�x , t� is proportional to the amplitude
of the electric field, i.e., �u�x , t����E�Z ,T��. Here the evolu-
tion in time is replaced by the propagation in Z and x=T is
the so-called transverse distance �2,4�. In real transmission
systems R may describe the fiber loss, the gain due to the
periodic amplification, the presence of filters in the fibers,
etc.

In this paper we consider the following combination of
perturbations:

R = f�x,t� − i�u�x,t� − �u�x,t� �2�

with the real parameters � and � and the nonparametric spa-
tiotemporal driving force

f�x,t� = aeiK�t�x, �3�

which yields several interesting effects, as we will see. The
literature so far has mostly dealt with parametric driving

�1,2,5–9�. Nonparametric �external� driving was studied
without space dependence, e. g., f =� exp�i�t� �10–12�, and
with a periodic space dependence, e.g., f =� exp�i�kx−�t��
�13,14�. Moreover, f =� exp�ig�x , t�− i�t�, where g is a func-
tion of x−vt, was considered, but no localized solutions were
discussed �14�.

Our driving term in Eq. �3� was already used in the dis-
crete form fn�t�=a exp�in��t��. Here n denotes the nth reso-
nator in an array of coupled nonlinear optical waveguides, in
which discrete cavity solitons can be excited �15�. The array
can be modeled by a discrete nonlinear Schrödinger equation
�DNLSE�, where � is the incident angle of a laser pump light
�15�. In order to obtain a ratchet effect, a biharmonic ��t�
was considered which breaks a temporal symmetry �16�.

In this paper we work with an arbitrary function K�t� in
the driving term Eq. �3� and develop a collective-coordinate
�CC� theory for the soliton dynamics which results in a set of
nonlinear coupled ordinary differential equations �ODEs� for
the CCs �Secs. II and III�. In order to obtain analytical and
numerical solutions we then consider the case of temporally
constant, spatially periodic driving f�x�=a exp�iKx� with
constant K �Sec. IV�. Although the spatial average of f�x�
vanishes, there is transport: the soliton performs a unidirec-
tional motion on the average, in contrast to the case of the
perturbation R=V�x�u�x , t� with a periodic potential V�x� in
which the soliton performs an oscillatory motion around a
minimum of V�x� �7�. Solutions of the CC equations for the
case of a harmonic or biharmonic time dependence of K�t�
will be presented in a second paper.

The second term, −i�u�x , t� with ��0, in the perturba-
tion �2� is a damping term which allows us to obtain a bal-
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ance between the energy input from the driving and the dis-
sipation. Other more complicated damping terms have been
considered in �17,18�.

The parameter � in the third term on the rhs of Eq. �2� is
the cavity detuning parameter in the above mentioned
DNLSE �15,16�. In our paper, � will turn out to be decisive
for the stability of the driven soliton. For ��0 the soliton
radiates phonons �i.e., linear excitations� and eventually van-
ishes, or even breaks up into several solitons. For ��0 the
situation is more complicated and will be discussed below.

Section V presents a stable and an unstable stationary
solution for the case without damping. For the region around
the stable solution the CC theory yields solutions in which
all CCs exhibit oscillations with the same intrinsic frequency
	. However, tests by simulations, i.e., numerical solutions of
the perturbed NLSE, reveal that the oscillatory solutions are
stable only for certain regions of the initial conditions. These
regions become broader when � is more negative �Sec. VI�.

We conjecture that the stability of any of these oscillatory
solutions can be predicted by our CC theory by calculating
the curve P�V�, where P�t� and V�t� are the momentum and
the velocity of the soliton, respectively. This means that ev-
ery point on this curve is visited during one period of the
oscillatory solution. The conjecture is that the soliton will
become unstable in a simulation, if the curve P�V� has a
branch with negative slope, and this is confirmed by our
simulations �Sec. VI�. Interestingly, the curve P�V� not only
predicts whether the soliton is unstable, but it also allows us
to estimate the soliton lifetime: this time is longer, the shorter
the branch with negative slope is �Sec. VI�.

The stability criteria for the NLS solitons available in the
literature cannot be utilized in our case. The Vakhitov-
Kolokolov criterion �19,20� requiring that the integral N
=��u�2dx be a monotonically growing function of the soliton
frequency, was established for stationary solitons. A similar
criterion employing P as a function of V is valid for solitons
moving with a constant velocity �21–23�. This latter criterion
states that the stability is lost at the point where dP /dV=0,
dividing the curve P�V� into a stable and unstable branch �8�.
Each point on the curve represents a soliton traveling with
some constant velocity and so the points of extremum divide
the family of solitons into stable and unstable ones. On the
contrary, in our case the oscillatory soliton is visiting the
entire P�V� curve and therefore the analysis of �8,23� is not
applicable. Finally we show in Sec. VII that the kinetic and
canonical soliton momenta are identical, and we analytically
calculate the soliton and phonon dispersion curves.

II. MODIFIED CONSERVATION LAWS

The first three conserved quantities for the unperturbed
NLSE are the norm N=�dx�u�2, the momentum P
= i

2�dx�uux
�−u�ux�, and the energy E=�dx��ux�2− �u�4�, where

the integration is on −
�x�+
. The same procedures
which are used to prove these conservation laws �24� can
also be applied to the perturbed NLSE �Eq. �1�� in order to
obtain the time evolution of N, P and E: We multiply Eq. �1�
by u� and its complex conjugate by u, subtract the latter from
the former, integrate over x and obtain

Ṅ = i�
−


+


dx�R�u − Ru�� , �4�

where the dot denotes the time derivative.
Multiplication of Eq. �1� by ux

�, addition of the complex
conjugate equation multiplied by ux, and integration yields

Ṗ = �
−


+


dx�R�ux + Rux
�� . �5�

Multiplication of Eq. �1� by ut
�, addition of the complex

conjugate equation multiplied by ut, and integration yields

Ė = − �
−


+


dx�R�ut + Rut
�� . �6�

Interestingly, for �=0 and time independent force, i.e.,
R= f�x�−�u, the r.h.s. of Eq. �6� can be written as a time
derivative,

Ė = −
�

�t
�

−


+


dx�f�u + fu� − ��u�2� . �7�

Thus the perturbed NLSE �Eq. �1�� without damping pos-
sesses a conserved quantity for arbitrary f�x�,

Etot = �
−


+


dx��ux�2 − �u�4 − ��u�2 + f�u + fu�� . �8�

f�x� can be interpreted as a constant �external� force, in
contrast to the case of the perturbation R=V�x�u, where V�x�
can be understood as a potential �in which the solitons
move�. In this case the conserved quantity is �7� �see also
�25��

Epara
tot = �

−


+


dx��ux�2 − �u�4 + V�x��u�2� . �9�

In Secs. IV and V we will show that a soliton under a
constant periodic force f�x�=a exp�iKx� performs, on the av-
erage, a unidirectional motion, although the average of f
vanishes.

When we include the damping ���0�, the time evolution
of the total energy is

Ėtot = − ��
−


+


dx�2�ux�2 − 4�u�4 − 2��u�2 + f�u + fu�� .

�10�

III. COLLECTIVE COORDINATE THEORY

For soliton-bearing systems CC theories have been very
successful, see Ref. �26� for a review and further references.
Typically, one starts with the exact one-soliton solution of
the unperturbed system and assumes that perturbations of the
system change the motion and the shape of the soliton in
such a way that both can approximately be described by the
one-soliton solution, but with time dependent parameters
which are denoted collective coordinates.
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The 1-soliton solution of the unperturbed NLSE reads �1�

u�x,t� = 2i� sech�2��x − ��e−i�2�x+�� �11�

with the real parameters ��0 and �, the soliton position

�t� = 0 − 4�t , �12�

and the phase of the internal oscillation

��t� = �0 + 4��2 − �2�t . �13�

The soliton has amplitude 2�, width 1 / �2��, velocity V=
−4� and phase velocity of the carrier wave Vph=−2�
+2�2 /�.

Including the term with � on the rhs of Eq. �1�, only the
phase is changed:

��t� = �0 + �4��2 − �2� − ��t . �14�

For this reason the term with � need not be treated as a
perturbation and will be counted among the unperturbed
parts of the NLSE in the following:

iut + uxx + 2�u�2 + �u = f�x,t� − i�u . �15�

Therefore we now define the energy as

E = �
−


+


dx��ux�2 − �u�4 − ��u�2� , �16�

which is conserved for the unperturbed NLSE. Using Eq.
�11� we obtain the soliton energy

Esol = 16��2 −
16

3
�3 − 4�� . �17�

The definitions of the norm and momentum need not be
changed, because all terms with � drop out on the rhs of Eq.
�4� and �5�. The norm and the momentum of the soliton are,
respectively,

N = 4�; P = − 8�� . �18�

Writing P=MV, the soliton mass is related to the norm by
M =N /2.

A perturbation theory based on the inverse scattering
theory �IST� results �1,27� in a time dependence of � and �
and in a change of the simple linear time dependence of 
and � in Eqs. �12� and �13�. Therefore we expect that for
sufficiently small perturbations Eq. �2� the soliton shape and
dynamics can be described by Eq. �11� which we take as an
ansatz with the four collective coordinates ��t�, ��t�, �t� and
��t� �a similar ansatz has been used for optical solitons
where � is related with the beam amplitude, � is a transverse
velocity, � is a self-focused beam �4,28��.

We insert Eq. �11� into Eqs. �4�–�6�, using f�x , t�
=a exp�iK�t�x� from Eq. �3�. Equation �4� yields

�̇ = − 2�� − a
�

2
sech A cos B , �19�

with

A�t� =
�

4
�K�t� + 2��t��/��t� , �20�

B�t� = ��t� + �K�t� + 2��t���t� . �21�

Two of the three terms which result on the rhs of Eq. �5�
cancel with the term −8�̇� on the lhs. The remaining term is

�̇ = aA sech A cos B . �22�

Finally, Eq. �6� gives

8��̇M − 4�̇N = 0, �23�

where M and N are some combinations of our collective
variables and their derivatives. One solution of Eq. �23�
arises by setting both M=0 and N=0; by using an alterna-
tive method we will show below that this is the only solution
of Eq. �23�. Setting M=0 amounts to

̇ = − 4� +
a�2

8�2 sech A tanh A sin B , �24�

and letting N=0 is equivalent to

�̇ + 2�̇ = 4��2 − �2� − � +
a�A

2�
sech A tanh A sin B .

�25�

The four CC equations �19�, �22�, �24�, and �25� can al-
ternatively be obtained by a variational method, because the
Lagrangian density for our perturbed NLSE is easily ob-
tained as

L =
i

2
�utu

� − ut
�u� − �ux�2 + �u�4 + ��u�2 − fu� − f�u . �26�

The dissipative term in the perturbation Eq. �2� can be taken
into account by generalizing the Euler-Lagrange equation in
the following way �29�:

d

dt

�L
�ut

� +
d

dx

�L
�ux

� −
�L
�u�

=
�F
�ut

� , �27�

with the dissipation function

F = i��uut
� − u�ut� . �28�

Equation �27� is equivalent to our perturbed NLSE.
Inserting our CC ansatz and integrating over the system

we obtain the CC Lagrangian

L = 4��̇ + 8��̇ − 16��2 +
16

3
�3 + 4�� − 2�a sech A sin B

�29�

and the CC dissipation function

F = − ��8��̇ + 16��̇� . �30�

The CC equations are then obtained by the four general-
ized Lagrange equations

d

dt

�L

��̇
−

�L

��
=

�F

��̇
, �31�

where � stands for the four CCs �, �, , and �. The resulting
four ODEs are identical to Eqs. �19�, �22�, �24�, and �25�.
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This gives an indirect proof that M=0, N=0 provides the
only possible solution of Eq. �23�.

Finally we evaluate Eq. �8�, yielding

Etot = 16��2 −
16

3
�3 − 4�� + 2�a sech A sin B . �32�

Here the first three terms are the soliton energy �Eq. �17��,
while the last term stems from the perturbations. We note
that Etot is conserved only in the case of no damping
��=0� and time independent force f�x�=a exp�iKx� with
constant K, see below Eq. �7�.

IV. CONSTANT, SPATIALLY PERIODIC FORCE

We consider this case because it exhibits some surprising,
counterintuitive features: e.g., the soliton position performs
oscillations on a length scale that is very different from the
spatial period L of the force.

We take a constant K in Eq. �3�, i.e., f�x�=a exp�iKx�, and
consider only small values of �K� such that the period L
=2� / �K� is much larger than the soliton width. We first con-
sider the case with damping ���0� for which we can expect
“steady-state solutions” �see below Eq. �36�� for times much
larger than a transient time � on the order of 1 /�.

The transformation u�x , t�=��X , t�exp�iKx� into a mov-
ing frame X=x−Vft with Vf =2K leads to the autonomous
equation

i�t + �XX + 2���2� = a + �K2 − ��� − i�� , �33�

with the nonparametric constant driving term a. Apart from
the factor K2−�ªc2, which can be eliminated by scaling
time by c2, space by c�0, and � by 1 /c, Eq. �33� is the
same as an autonomous equation, which was obtained from
the NLSE �Eq. �1�� with R=� exp�i�t�− i�u by the substitu-
tion u=��x , t�exp�i�t�, setting �=1 �11,12�. However, these
investigations differ from ours in several respects: In Ref.
�11� static soliton solutions of Eq. �33� were obtained nu-
merically, then an existence and stability chart was con-
structed on the �a ,�� plane. In Ref. �12� a singular perturba-
tion expansion was performed at the soliton’s existence
threshold. In contrast, we study moving solitons by solving
our CC equations, and test the results by simulations, i.e., by
numerically solving the NLSE �Eq. �1��. Besides the steady-
state solutions for ��0 �this section�, for the case �=0 we
study stationary solutions and oscillatory solutions, which
have a more complicated time dependence �Sec. V�.

The CC equations from the previous section yield steady-
state solutions, in which the driving is compensated by the
damping, using the ansatz =0+Vft with Vf =2K and con-
stant �, �, and �,

uf
��x,t� = 2i� f sech	2� f�x − �t��
ei�Kx−�f

��, �34�

with

� f = �K2 − �/2, �35�

� f
� = �

�

2
+ arcsin

4�� f

�a
. �36�

We denote this as steady-state solutions, because � is con-
stant, in contrast to stationary solutions, where � has a linear
time dependence �Sec. V�. These solitons have an internal
structure due to the factor exp�iKx�, but no internal oscilla-
tions since � f

� is constant. In the moving frame these soli-
tons correspond to the above mentioned static solutions of
Eq. �33� in Ref. �11�.

We have numerically solved the CC equations for many
sets of initial conditions �IC� �0, 0, �0, and �0. There is a
basin of attraction around the solution �34� with � f

+. The
initial conditions always evolve to this solution except when
the values of �0, �0, and �0 are too far from those of this
steady-state solution and when the damping � is too large.
An example for this is the parameter set a=0.05, K=0.01,
�=−3, ���c�0.003 with the IC �0=1, �0=0=�0=0. Here
the soliton vanishes, i.e., its amplitude and energy go to zero
while its width goes to infinity. In order to reach the stable
steady-state solution one can either reduce � below the criti-
cal value �c �which depends on the other parameters and the
IC�, or go closer to � f =0.8660 by reducing �0 by 0.1, for
instance, or go closer to � f

+ by choosing �0=� /2.
In this context it is interesting to consider the total energy

�Eq. �32�� and its time derivative in which the CC equations
can be inserted. We obtain

Ėtot�t� = − �	8��4��2 − �2� − �� + 4�A sech A tanh A sin B
 .

�37�

This is indeed zero for the steady-state solution because � f
=−K /2 and thus A0. On the path to that solution, Eq. �37�
alternately exhibits both signs. i.e., the total energy performs
oscillations which become smaller and smaller while ap-
proaching the final value Ef

tot.
According to Eq. �35�, ��K2. As we choose �K��1 �see

above�, � is either positive but very small, or � is negative.
This results from the CC theory; in Sec. VII we will show
that the driven soliton can be stable only for ��0, by taking
into account the phonon modes.

The quality of the CC theory must be tested by simula-
tions. The soliton shape agrees very well �Fig. 1�, but in the
simulations the soliton resides on a small constant back-
ground because the perturbation f�x�=a exp�iKx� does not
vanish far away from the soliton. This background is

ubg = −
a

�K
eiKx, �38�

with �K=K2−�− i�; see also the last term in Eq. �73�. Simi-
lar to the case of cavity solitons in the DNLSE driven by a
biharmonic force �16�, here the use of the driving beam
f�x�=a exp�iKx� supports also cavity solitons sitting on a
nonzero background field. Plotting the real and imaginary
parts of u, the spatial period L=2� / �K� is observed. The
norm density �u�2 forms a shelf on which the soliton moves;
the shelf height is quantitatively confirmed. The dynamics of
the soliton is practically not affected by the background: the
time evolution of the soliton position is identical in the CC
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theory and the simulations �Fig. 2, right panel�; only the
soliton amplitude differs a little �left panel�.

All CCs exhibit decreasing oscillations with an intrinsic
frequency 	 which will be discussed in the next section.
However, oscillations are not visible in the soliton position
�t� in Fig. 2 because the linear term dominates the time
evolution. By reducing the damping � and by choosing a
smaller time scale one can see the oscillations also in �t�,
see Fig. 3.

In any case, the soliton performs, on the average, a uni-
directional motion although the spatial average of the peri-
odic force f�x�=a exp�iKx� is zero. Thus, this is a ratchetlike
system in which the translational symmetry is broken by the
inhomogeneity f�x� in the NLS equation.

The period L=2� / �K� of the inhomogeneity f�x� is not
reflected in the soliton dynamics, because our Eqs. �1�–�3�
could be reduced to the autonomous Eq. �33�. For early times
�t��=O�1 /��� the soliton performs the above mentioned
oscillations. However, the amplitude of these oscillations is
much smaller than L �e.g., L=62.8 for K=0.1�. When the
strength a of the inhomogeneity is strongly increased �a=1,
for instance�, �t� exhibits a staircase structure. The height of
the steps is larger than the amplitude of the above oscilla-
tions, but still much smaller than L. However, such values of
a represent a strong perturbation for which the CC theory
can no longer be valid. Indeed, in the simulations the soliton
soon becomes unstable.

V. OSCILLATORY SOLUTIONS

In order to study in more detail the intrinsic oscillations in
the CCs �see previous section�, we consider the case without
damping ��=0�. Here oscillatory solutions are possible be-
cause the total energy �Eq. �32�� is conserved, see Eq. �37�.
This means that in Eq. �32� oscillations of the soliton energy,
Eq. �17�, are compensated by the oscillations of the term
2�a sech A�t�sin B�t� stemming from the perturbations. This
is confirmed by inserting numerical solutions of the CC
equations into Eq. �32�.

In order to obtain analytical solutions our approach is to
look first for stationary solutions and then to consider small
oscillations around them. For the stationary solutions we
make the ansatz =s+Vst, �=�s, �=�s, and �=�s−�st. The
CC equations �19�, �22�, �24�, and �25� yield

0 = −
a�

2
sech As cos B , �39�

0 = aAs sech As cos B , �40�

Vs = − 4�s +
a�2

8�s
2 sech As tanh As sin B , �41�

0 100 200 300 400 500

time
0.7

0.8

0.9

1

1.1

η(
t)

0 100 200 300 400 500

time
-10

-8

-6

-4

-2

0

ζ(
t)

(b)(a)

FIG. 2. �Color online� The amplitude and position of the soliton obtained from a simulation of the NLSE �red dashed lines� and from the
numerical solution of the CC equations �solid lines�. Parameters: K=−0.01, a=0.05, �=−3, �=0.01, with IC �0=0, 0=0, �0=� /2, and
�0=1.
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FIG. 1. Left panel: soliton moving to the left for t�=250, 500. Simulations of NLSE �solid lines� and numerical solutions of CC
equations �dotted lines�. Right panel: real �solid line� and imaginary �dashed line� parts of u�x , t� for t=500. Parameters: K=−0.1, a=0.05,
�=−1, �=0.05, with IC �0=0, 0=0, �0=1.69, and �0=0.5.
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− �s = 4��s
2 − �s

2� − � +
a�As

2�s
sech As tanh As sin B ,

�42�

with

As =
�

4
�K + 2�s�/�s, �43�

B�t� = �s + �K + 2�s�s + ��K + 2�s�Vs − �s�t . �44�

Equation �39� must be fulfilled for arbitrary t, thus
cos B0, which leads to

�s = �K + 2�s�Vs, �45�

�s + �K + 2�s�s = �
�

2
, �46�

sin B = � 1, �47�

respectively. We distinguish two different cases: In case I,
�s=0 and we obtain the steady-state solutions of Sec. IV. In
the comoving frame these solutions correspond to two exact
static solutions of Eq. �33� for zero damping �11,30�. Here
one solution is stable below a critical driving strength,
whereas the other one is always unstable.

In case II, �s�0, which means that we obtain stationary
solutions. Here we can restrict ourselves to the case s=�s
=0, because other values yield qualitatively similar results.
Using Eqs. �41�–�43� and �45� one transcendental equation
for �s remains

4�s
2 = − � �

�2aK

4�s
2 sech As tanh As. �48�

For the parameter set a=0.05, K=0.1, and �=−3 we get �s
=0.866 239 for �s=� /2 and 0.865 811 for �s=−� /2. The
numerical solution of the CC equations for these two cases
reveals that in the former case we have a stable stationary
solution, whereas in the latter case the solution is unstable.

For the region around the stable stationary solution we
expect that all CCs exhibit oscillations and we assume that
these oscillations are harmonic if the amplitudes are suffi-

ciently small. We choose �0=� /2 and make the ansatz

�t� = V̄t − a sin�	t� , �49�

��t� = �0 + a��1 − cos�	t�� , �50�

��t� = − a��1 − cos�	t�� , �51�

��t� = �0 − �t + a� sin�	t� . �52�

This ansatz takes into account that the soliton first starts its

oscillatory motion �i.e., − V̄t is linear in t for small t�, and
then the soliton shape changes �i.e., � is quadratic for small
t�.

Since we have considered the stationary solution that be-
longs to �s=s=0, we can neglect � compared to K and ob-
tain for B in Eq. �21�,

B = �0 + �a� − Ka�sin�	t� + �KV̄ − ��t . �53�

Ka is one order smaller than a�, because �K��1, and we get

B = �0 + a� sin�	t� + �KV̄ − ��t . �54�

Here we can distinguish two limiting cases: in case 1, the
linear terms cancel and we have a pure oscillatory behavior.
In case 2, the linear term dominates the oscillatory term
which can then be neglected. Indeed, taking the second de-
rivative of � with respect to time and using Eqs. �19�, �22�,
�24�, and �25� one obtains �̈=c1 sin�B�+c2 sin�2B�
+c3 cos�B�+c4 cos�2B�+c5, where ci with i=1,2 , . . . ,5 are
functions of the CCs. Considering the above approximations,

and in addition when the terms of order of aKV̄�4�0
2+��t are

negligible, one realizes that c1, c2, c4, and c5 are small com-
pared with c3=	2,

	2 � 4�a�0, �55�

and hence, the equation for ��t� reads

�̈ − 	2 cos��� = 0. �56�

Integrating this equation once we obtain
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FIG. 3. �Color online� The amplitude and position of the soliton obtained from a simulation of the NLSE �red dashed lines� and from the
numerical solution of the CC equations �solid lines�. Parameters: K=0.1, a=0.05, �=−3, �=0.001, with IC �0=0, 0=0, �0=0 and �0

=�K2−� /2.
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�̇ = � 	�2�sin��� + C , �57�

where C= �̇0
2 / �2	2�−sin��0����4�0

2+��2� / �8�a�0�−1.
Then, if C�1, the constant term dominates and so ��t� goes
linearly, i.e., ��t�=� /2� �4�0

2+��t. Notice that C�1 im-
plies �4�0

2+��2�16�a�0, which can be solved for �0, yield-
ing for a=0.05, �=−3 and �0=� /2, �0�0.655, or
�0�1.077. This is confirmed by numerical solutions of the
CC equations which exhibit an oscillatory behavior of ��t�
for �0� �0.65;1.07�, and a linear behavior �plus small oscil-
lations� outside of this interval.

Finally we remark that V̄ in the oscillatory solutions dif-
fers from the velocity Vf =2 K of the steady-state solutions.
A transformation to a frame moving with V�2 K would not
simplify the NLSE because terms with �X would appear in
Eq. �33�.

VI. STABILITY OF OSCILLATORY SOLUTIONS

Our simulations reveal that the driven undamped soliton
is stable only for a part of the set of solutions obtained by the
CC theory. Naturally we would like to predict, by using the
CC theory, which solutions are unstable and to understand
what causes the instability. �The latter point will be discussed
in the next section�.

For the NLSE with a general local nonlinearity, but with-
out driving and damping, the Vakhitov-Kolokolov stability
criterion �19,20� states that solitons are stable if dN /d��0.
Here N is the norm and � the so-called spectral parameter in
stationary solutions of the form u�x , t�=��x�exp�i�t�. How-
ever, our oscillatory solutions, Eqs. �49�–�52� inserted into
Eq. �11�, have a more complicated time dependence than
stationary solutions; therefore the criterion cannot be applied
here.

The same holds for the stability criteria of Barashenkov
�8,23� which were established for solitons traveling with
constant velocity. But here we can get some motivation for
how to proceed in our case: Barashenkov showed that dark
solitons of the NLSE with generalized nonlinearity are stable

if dP̃ /dṼ�0 �here the tildes are used to distinguish from our
P and V� �23�. This proof was carried over to �bright and
dark� solitons of the undamped parametrically driven NLSE

�8�. Here the point dP̃ /dṼ=0 separates a stable from an un-

stable branch of the curve P̃�Ṽ�, but it depends on the type of
the solution on which side the stable branch is. For the fol-

lowing it is important to note that this curve P̃�Ṽ� represents
a family of solutions with different velocities, i.e., each so-
lution is represented by one point on the curve.

We make the conjecture that our oscillatory solutions are
dynamically unstable, if our curve P�V� has a branch with
negative slope, i.e.,

dP

dV
� 0, �58�

for a finite interval of V. This curve is obtained from its
parameter representation P�t�, V�t�, where P�t�=−8�� is the

soliton momentum Eq. �18� and the soliton velocity V�t�= ̇

is obtained by the rhs of Eq. �24�. Each oscillatory solution is
represented by its own curve P�V�. This curve has a finite
length, because P�t� and V�t� are periodic and remain finite,
��t� and ��t�, which contain terms linear in t, do not appear
in P�t�, and in V�t� they appear only via sin B, see Eq. �24��.
Plotting the “stability curve” P�V� we can immediately see
whether there is a branch with negative slope.

For the parameter set a=0.05, K=0.1, �=0, and �=−1
and IC 0=�0=0 and �0=� /2, we find a small “stability
interval” 0.48��0�0.52, i.e., an interval of initial condi-
tions for which the solutions are stable. As expected, this
interval is situated around the value �s=0.501874 from the
stable stationary solution �48�. There is another stable regime
for �0�0.76. When we go far away from the IC for the
stationary solution by choosing �0=0, instead of �0=� /2,
the stability interval around �s vanishes. The upper stability
regime exists now for �0�0.69.

When ��� is increased, e.g., by choosing �=−3, the stabil-
ity interval around �s=0.866 239 is much larger than in the
case �=−1; for �0=� /2 it is 0.7��0�1.03. The upper sta-
bility region is above �0=1.08. Considering again �0=0, the
stability interval around �s only shrinks to 0.76��0�0.97,
but does not vanish because it was much larger than in the
case �=−1. The upper stable region is above �0=1.02. Thus
the conclusion is that an increase of ��� widens the regions
with stable soliton solutions. All the stability regions given
above are confirmed by simulations for the perturbed NLSE,
with an error of less than 1%.

At some of the boundaries of the above stability intervals
there is a drastic change in the shape of the solutions of the
CC equations and the stability curve. E.g., if we choose �0
=0.75 �Fig. 4�, which is just below the stability regime �0
�0.76 �see above�, we obtain very anharmonic oscillations
in all CCs and the stability curve has a long branch with
negative slope �Fig. 5�. The simulations indeed show that the
soliton becomes unstable very quickly and vanishes �Fig. 4�.
However, a slight change of �0 to the value 0.76 produces a
stability curve that has only one branch with a positive slope
�Fig. 5�. Here the soliton is indeed stable in the simulations
�Fig. 6�.

At the boundaries of other stability intervals the change of
the shape of the solutions is less dramatic. E.g., for the case
�=−1 and �0=0.46 the oscillations in the CCs are small and
harmonic. The stability curve has only a very short branch
with negative slope which is visited in the time evolution
only for very short time intervals �Fig. 7�. Here the soliton is
indeed stable for a relatively long time �Fig. 8�. This soliton
lifetime is increasingly reduced when �0 is reduced by which
the negative-slope branch in P�V� becomes longer. Thus this
curve predicts not only whether the soliton is stable, but also
gives an estimate for its lifetime when it is unstable.

VII. SOLITON AND PHONON DISPERSION CURVES

For the soliton dispersion curve Esol�P� we need the ca-
nonical momentum P of the soliton. P must fulfill the Hamil-
ton equation

̇ =
�H

�P
, �59�

where  is the soliton position. We start from the CC La-
grangian Eq. �29� and obtain
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�L

��̇
= 4� = N , �60�

as the angular momentum of the internal oscillation of the
soliton, and

�L

� �̇
= 8� = 2N ª X , �61�

as the variable which is canonically conjugate to �. Using a
Legendre transformation we obtain the Hamilton function

H = X�̇ + N�̇ − L , �62�

H�X,�;N,�� = 4N�2 −
1

12
N3 − �N + 2�a sech A sin B ,

�63�

with

A = 2�
K + 2�

2N
, B = � +

K + 2�

2N
X . �64�

We now make an ansatz for a canonical transformation to the
following new set of variables:

P = − 2N�,  =
1

2N
X , �65�
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FIG. 4. The evolution of �, , �, and � obtained from the numerical solutions of the CC equations �solid lines� and the evolution of �
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Ñ = N, �̃ = � + g�N,�,X� . �66�

This means that P is identical to the kinetic momentum in

Eq. �18�, Ñ is chosen to be equal to N and g still has to be
determined such that the four fundamental Poisson brackets
are fulfilled. This yields g=�X /N. The new Hamiltonian
reads

H�P,;N,�̃� =
1

N
P2 −

1

12
N3 − �N + 2�a sech A sin B ,

�67�

with

A =
�

N
�K −

P

N
�, B = �̃ + K . �68�

The first two terms in Eq. �67� agree with literature results on
the unperturbed NLSE �3�. We have checked that the four
Hamiltonian equations which result from Eq. �67� are indeed
equivalent to the four CC equations in Sec. III for the case
without damping. The above results hold for the force f�x , t�
in Eq. �3� with arbitrary K�t�. In the following we return to
the case of constant K in order to calculate analytically the
stability and dispersion curves wherever it is possible.

Let us consider the stability intervals around the station-
ary solutions as given in Sec. VI. Except for the close vicin-
ity to the boundaries of the stability intervals, the oscillations
in the CCs are nearly harmonic and can be well approxi-
mated by the Eqs. �49�–�52�. Inserting into P=−8��, ne-

glecting the second harmonic, and using V= ̇, one can easily
see that P�V� is a straight line with slope

dP

dV
=

8�0a�

	a

� 0, �69�

because for �0��s both a� and a are positive and for
�0��s both are negative. The latter also holds for the upper
stability intervals �0�0.76 for �=−1 and �0�1.08 for
�=−3. Near or at the boundaries of the stability intervals, the
oscillations in the CCs are very anharmonic and therefore the
calculation leading to Eq. �69� is not possible. P�V� is a
curved line which can be calculated using the numerical so-
lution of the CC equations.

We now turn to the soliton dispersion curve Esol�P�. Both
P=−8�� and Esol in Eq. �17� consist of powers of � and �.
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For simplicity we write Eqs. �50� and �51� as �

= �̄−a� cos�	t� and �= �̄+a� cos�	t�, where �̄ is negligible.
We concentrate on the leading terms in cos�	t� and distin-
guish two cases: in case I, both Esol�t� and P�t� have a lead-
ing term with cos�	t�; in this case the dispersion curve
Esol�P� is linear in the first approximation. In case II, the
first-order terms in Esol�t� cancel if �̄= 1

2
�−�, but cannot can-

cel in P�t�. In the next order

Esol�t� = Emax − �E cos2�	t� , �70�

with �E=16�̄�a�
2 /3−a�

2��0 because �a��� �a��. Inserting P

= P̄+8�̄a� cos�	t� yields a parabolic dispersion curve

Esol�t� = Emax − �E�P − P̄

8�̄a�

�2

. �71�

This turns out to be a surprisingly good approximation when
comparing with the dispersion curve obtained by using nu-
merical solutions for ��t� and ��t�, even when the cancella-
tion of the linear terms in Esol�t� is not exact. The condition
�̄=�−� /2 is approximately fulfilled for the regions with
strong oscillatory terms in ��t�; see end of Sec. V.

When solitons become unstable they radiate phonons �i.e.,
linear excitations�. Therefore we consider the perturbed lin-
earized NLSE without damping

iut + uxx + �u = aeiKx, �72�

which is solved by

u�x,t� = cei�kx−�kt� + bei�Kx−�Kt� −
a

�K
eiKx �73�

with �k=k2−�, �K=K2−�. The first term in Eq. �73� repre-
sents the phonons of the unperturbed equation with the free
amplitude c and the dispersion curve �k.

The second term in Eq. �73� with the free amplitude b
represents a single phonon mode whose wave number and
frequency are given by the parameter K in the force f�x�
=aeiKx. Such phonons are typically radiated at the beginning
of a simulation as the initial soliton profile adapts to the
system. These phonons can be observed best when they in-
teract with the soliton after having been reflected by a
boundary of the system.

Finally, the last term in Eq. �73� represents a static back-
ground with a fixed amplitude a /�K. This was already dis-
cussed below Eq. �38�.

VIII. CONCLUSIONS

We have considered the dynamics of NLS solitons in one
spatial dimension under the influence of nonparametric spa-
tiotemporal input fields of the form f�x , t�=a exp�iK�t�x�,
plus a damping term and a linear term �u�x , t� which stabi-
lizes the driven optical soliton. We have developed a CC
theory which yields a set of ODEs for the four CCs �position
, velocity �, amplitude �, and phase ��.

These coupled ODEs have been solved analytically and
numerically for the case of a constant, spatially periodic
force f�x�=a exp�iKx�. The soliton position exhibits oscilla-

tions around a mean trajectory ̄= V̄t; this means that the
soliton performs, on the average, a unidirectional motion al-
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though the spatial average of the force vanishes. The ampli-
tude of the oscillations is much smaller than the spatial pe-
riod L=2� / �K� of the inhomogeneity f�x�. The other three
CCs also exhibit oscillations with the same frequency as �t�.

In the case of damping, the above oscillations are damped
and the solution approaches a steady-state solution, �i.e., a
solution with a constant self-focused beam �, whose beam
amplitude � evolves in time until a constant value is reached
and where a transverse constant velocity is determined by the
wave number K�, if the IC are close enough to those of the
steady-state solution and if the damping is not too large.
Otherwise the soliton vanishes, i.e., its amplitude and energy
go to zero while its width goes to infinity.

In the case without damping all the above oscillations
persist. These periodic solutions exist because the total en-
ergy of the perturbed system is a conserved quantity, even
for arbitrary inhomogeneity f�x�, and independent of the CC
ansatz.

However, a comparison with simulation results for the
perturbed NLSE reveals that only part of the above oscilla-
tory solutions are stable. Our CC theory predicts the unstable
regions in the IC and the parameter � with high accuracy, by
using our conjecture that the soliton becomes unstable if the
slope of the curve P�V� becomes negative somewhere: here
P�t� and V�t� are the soliton momentum and velocity, respec-
tively. It turns out that the stability intervals become broader
when the parameter � is chosen more negative. Moreover,

we have found that the curve P�V� also yields a good esti-
mate for the soliton lifetime: the soliton lives longer, the
shorter the negative-slope branch is, as compared to the
length of the positive-slope branch.

We have shown that cavity solitons can be supported by
means of the driving beam f�x�=a exp�iKx�. We believe that
our findings should help to promote and guide the develop-
ment of new experiments in optical transmission lines. Other
cases of the force f�x , t�=exp�iK�t�x� will be considered in a
second paper: specifically single and biharmonic K�t�, with
and without damping.
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