419 research outputs found
Differential rotation enhanced dissipation of tides in the PSR J0045-7319 Binary
Recent observations of PSR J0045-7319, a radio pulsar in a close eccentric
orbit with a massive B-star companion, indicate that the system's orbital
period is decreasing on a timescale of years, which is
much shorter than the timescale of 10^9 years given by the standard
theory of tidal dissipation in radiative stars. Observations also provide
strong evidence that the B-star is rotating rapidly, perhaps at nearly its
break up speed. We show that the dissipation of the dynamical tide in a star
rotating in the same direction as the orbital motion of its companion (prograde
rotation) with a speed greater than the orbital angular speed of the star at
periastron results in an increase in the orbital period of the binary system
with time. Thus, since the observed time derivative of the orbital period is
large and negative, the B-star in the PSR J0045-7319 binary must have
retrograde rotation if tidal effects are to account for the orbital decay. We
also show that the time scale for the synchronization of the B-star's spin with
the orbital angular speed of the star at periastron is comparable to the
orbital evolution time. From the work of Goldreich and Nicholson (1989) we
therefore expect that the B-star should be rotating differentially, with the
outer layers rotating more slowly than the interior. We show that the
dissipation of the dynamical tide in such a differentially rotating B-star is
enhanced by almost three orders of magnitude leading to an orbital evolution
time for the PSR J0045-7319 Binary that is consistent with the observations.Comment: 8 pages, tex. Submitted to Ap
Turbulence and Mixing in the Intracluster Medium
The intracluster medium (ICM) is stably stratified in the hydrodynamic sense
with the entropy increasing outwards. However, thermal conduction along
magnetic field lines fundamentally changes the stability of the ICM, leading to
the "heat-flux buoyancy instability" when and the "magnetothermal
instability" when . The ICM is thus buoyantly unstable regardless of
the signs of and . On the other hand, these
temperature-gradient-driven instabilities saturate by reorienting the magnetic
field (perpendicular to when and parallel to when ), without generating sustained convection. We show that
after an anisotropically conducting plasma reaches this nonlinearly stable
magnetic configuration, it experiences a buoyant restoring force that resists
further distortions of the magnetic field. This restoring force is analogous to
the buoyant restoring force experienced by a stably stratified adiabatic
plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or
cosmic-ray buoyancy) to overcome this restoring force and generate turbulence
in the ICM, the strength of the driving must exceed a threshold, corresponding
to turbulent velocities . For weaker driving, the ICM
remains in its nonlinearly stable magnetic configuration, and turbulent mixing
is effectively absent. We discuss the implications of these findings for the
turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The
Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the
general mixing properties of the IC
A Kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU
(Abridged) Turbulence in the solar wind is believed to generate an energy
cascade that is supported primarily by Alfv\'en waves or Alfv\'enic
fluctuations at MHD scales and by kinetic Alfv\'en waves (KAWs) at kinetic
scales . Linear Landau damping of KAWs increases with
increasing wavenumber and at some point the damping becomes so strong that the
energy cascade is completely dissipated. A model of the energy cascade process
that includes the effects of linear collisionless damping of KAWs and the
associated compounding of this damping throughout the cascade process is used
to determine the wavenumber where the energy cascade terminates. It is found
that this wavenumber occurs approximately when ,
where and are, respectively, the real frequency and
damping rate of KAWs and the ratio is evaluated in the limit as
the propagation angle approaches 90 degrees relative to the direction of the
mean magnetic field.Comment: Submitted to Ap
Spherical Accretion with Anisotropic Thermal Conduction
We study the effects of anisotropic thermal conduction on magnetized
spherical accretion flows using global axisymmetric MHD simulations. In low
collisionality plasmas, the Bondi spherical accretion solution is unstable to
the magnetothermal instability (MTI). The MTI grows rapidly at large radii
where the inflow is subsonic. For a weak initial field, the MTI saturates by
creating a primarily radial magnetic field, i.e., by aligning the field lines
with the background temperature gradient. The saturation is quasilinear in the
sense that the magnetic field is amplified by a factor of
independent of the initial field strength (for weak fields). In the saturated
state, the conductive heat flux is much larger than the convective heat flux,
and is comparable to the field-free (Spitzer) value (since the field lines are
largely radial). The MTI by itself does not appreciably change the accretion
rate relative to the Bondi rate . However, the radial field
lines created by the MTI are amplified by flux freezing as the plasma flows in
to small radii. Oppositely directed field lines are brought together by the
converging inflow, leading to significant resistive heating. When the magnetic
energy density is comparable to the gravitational potential energy density, the
plasma is heated to roughly the virial temperature; the mean inflow is highly
subsonic; most of the energy released by accretion is transported to large
radii by thermal conduction; and the accretion rate . The
predominantly radial magnetic field created by the MTI at large radii in
spherical accretion flows may account for the stable Faraday rotation measure
towards Sgr A* in the Galactic Center.Comment: accepted in MNRAS with some modifications suggested by the referee;
15 pages, 16 figure
- …