417 research outputs found

    Differential rotation enhanced dissipation of tides in the PSR J0045-7319 Binary

    Full text link
    Recent observations of PSR J0045-7319, a radio pulsar in a close eccentric orbit with a massive B-star companion, indicate that the system's orbital period is decreasing on a timescale of 5×105\approx 5 \times10^{5} years, which is much shorter than the timescale of \approx 10^9 years given by the standard theory of tidal dissipation in radiative stars. Observations also provide strong evidence that the B-star is rotating rapidly, perhaps at nearly its break up speed. We show that the dissipation of the dynamical tide in a star rotating in the same direction as the orbital motion of its companion (prograde rotation) with a speed greater than the orbital angular speed of the star at periastron results in an increase in the orbital period of the binary system with time. Thus, since the observed time derivative of the orbital period is large and negative, the B-star in the PSR J0045-7319 binary must have retrograde rotation if tidal effects are to account for the orbital decay. We also show that the time scale for the synchronization of the B-star's spin with the orbital angular speed of the star at periastron is comparable to the orbital evolution time. From the work of Goldreich and Nicholson (1989) we therefore expect that the B-star should be rotating differentially, with the outer layers rotating more slowly than the interior. We show that the dissipation of the dynamical tide in such a differentially rotating B-star is enhanced by almost three orders of magnitude leading to an orbital evolution time for the PSR J0045-7319 Binary that is consistent with the observations.Comment: 8 pages, tex. Submitted to Ap

    Turbulence and Mixing in the Intracluster Medium

    Full text link
    The intracluster medium (ICM) is stably stratified in the hydrodynamic sense with the entropy ss increasing outwards. However, thermal conduction along magnetic field lines fundamentally changes the stability of the ICM, leading to the "heat-flux buoyancy instability" when dT/dr>0dT/dr>0 and the "magnetothermal instability" when dT/dr<0dT/dr<0. The ICM is thus buoyantly unstable regardless of the signs of dT/drdT/dr and ds/drds/dr. On the other hand, these temperature-gradient-driven instabilities saturate by reorienting the magnetic field (perpendicular to r^\hat{\bf r} when dT/dr>0dT/dr>0 and parallel to r^\hat{\bf r} when dT/dr<0dT/dr<0), without generating sustained convection. We show that after an anisotropically conducting plasma reaches this nonlinearly stable magnetic configuration, it experiences a buoyant restoring force that resists further distortions of the magnetic field. This restoring force is analogous to the buoyant restoring force experienced by a stably stratified adiabatic plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or cosmic-ray buoyancy) to overcome this restoring force and generate turbulence in the ICM, the strength of the driving must exceed a threshold, corresponding to turbulent velocities 10100km/s\gtrsim 10 -100 {km/s}. For weaker driving, the ICM remains in its nonlinearly stable magnetic configuration, and turbulent mixing is effectively absent. We discuss the implications of these findings for the turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the general mixing properties of the IC

    A Kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU

    Full text link
    (Abridged) Turbulence in the solar wind is believed to generate an energy cascade that is supported primarily by Alfv\'en waves or Alfv\'enic fluctuations at MHD scales and by kinetic Alfv\'en waves (KAWs) at kinetic scales kρi1k_\perp \rho_i\gtrsim 1. Linear Landau damping of KAWs increases with increasing wavenumber and at some point the damping becomes so strong that the energy cascade is completely dissipated. A model of the energy cascade process that includes the effects of linear collisionless damping of KAWs and the associated compounding of this damping throughout the cascade process is used to determine the wavenumber where the energy cascade terminates. It is found that this wavenumber occurs approximately when γ/ω0.25|\gamma/\omega|\simeq 0.25, where ω(k)\omega(k) and γ(k)\gamma(k) are, respectively, the real frequency and damping rate of KAWs and the ratio γ/ω\gamma/\omega is evaluated in the limit as the propagation angle approaches 90 degrees relative to the direction of the mean magnetic field.Comment: Submitted to Ap

    Spherical Accretion with Anisotropic Thermal Conduction

    Full text link
    We study the effects of anisotropic thermal conduction on magnetized spherical accretion flows using global axisymmetric MHD simulations. In low collisionality plasmas, the Bondi spherical accretion solution is unstable to the magnetothermal instability (MTI). The MTI grows rapidly at large radii where the inflow is subsonic. For a weak initial field, the MTI saturates by creating a primarily radial magnetic field, i.e., by aligning the field lines with the background temperature gradient. The saturation is quasilinear in the sense that the magnetic field is amplified by a factor of 1030\sim 10-30 independent of the initial field strength (for weak fields). In the saturated state, the conductive heat flux is much larger than the convective heat flux, and is comparable to the field-free (Spitzer) value (since the field lines are largely radial). The MTI by itself does not appreciably change the accretion rate M˙\dot M relative to the Bondi rate M˙B\dot M_B. However, the radial field lines created by the MTI are amplified by flux freezing as the plasma flows in to small radii. Oppositely directed field lines are brought together by the converging inflow, leading to significant resistive heating. When the magnetic energy density is comparable to the gravitational potential energy density, the plasma is heated to roughly the virial temperature; the mean inflow is highly subsonic; most of the energy released by accretion is transported to large radii by thermal conduction; and the accretion rate M˙M˙B\dot M \ll \dot M_B. The predominantly radial magnetic field created by the MTI at large radii in spherical accretion flows may account for the stable Faraday rotation measure towards Sgr A* in the Galactic Center.Comment: accepted in MNRAS with some modifications suggested by the referee; 15 pages, 16 figure
    corecore