341 research outputs found
An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core
Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles
NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS) has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs) that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924) is cytotoxic to PEL cells by inhibiting NF-κB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt). These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies
Citrullination regulates pluripotency and histone H1 binding to chromatin.
Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.Cancer Research UKThis is the author accepted manuscript. The final version is available from the Nature Publishing Group via http://dx.doi.org/10.1038/nature1294
A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis.
BACKGROUND: Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. RESULTS: Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. CONCLUSION: The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells
Worldwide comparison of survival from childhood leukaemia for 1995–2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89 828 children from 198 registries in 53 countries
Background Global inequalities in access to health care are reflected in differences in cancer survival. The CONCORD programme was designed to assess worldwide differences and trends in population-based cancer survival. In this population-based study, we aimed to estimate survival inequalities globally for several subtypes of childhood leukaemia.
Methods Cancer registries participating in CONCORD were asked to submit tumour registrations for all children aged 0-14 years who were diagnosed with leukaemia between Jan 1, 1995, and Dec 31, 2009, and followed up until Dec 31, 2009. Haematological malignancies were defined by morphology codes in the International Classification of Diseases for Oncology, third revision. We excluded data from registries from which the data were judged to be less reliable, or included only lymphomas, and data from countries in which data for fewer than ten children were available for analysis. We also excluded records because of a missing date of birth, diagnosis, or last known vital status. We estimated 5-year net survival (ie, the probability of surviving at least 5 years after diagnosis, after controlling for deaths from other causes [background mortality]) for children by calendar period of diagnosis (1995-99, 2000-04, and 2005-09), sex, and age at diagnosis (< 1, 1-4, 5-9, and 10-14 years, inclusive) using appropriate life tables. We estimated age-standardised net survival for international comparison of survival trends for precursor-cell acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML).
Findings We analysed data from 89 828 children from 198 registries in 53 countries. During 1995-99, 5-year agestandardised net survival for all lymphoid leukaemias combined ranged from 10.6% (95% CI 3.1-18.2) in the Chinese registries to 86.8% (81.6-92.0) in Austria. International differences in 5-year survival for childhood leukaemia were still large as recently as 2005-09, when age-standardised survival for lymphoid leukaemias ranged from 52.4% (95% CI 42.8-61.9) in Cali, Colombia, to 91.6% (89.5-93.6) in the German registries, and for AML ranged from 33.3% (18.9-47.7) in Bulgaria to 78.2% (72.0-84.3) in German registries. Survival from precursor-cell ALL was very close to that of all lymphoid leukaemias combined, with similar variation. In most countries, survival from AML improved more than survival from ALL between 2000-04 and 2005-09. Survival for each type of leukaemia varied markedly with age: survival was highest for children aged 1-4 and 5-9 years, and lowest for infants (younger than 1 year). There was no systematic difference in survival between boys and girls.
Interpretation Global inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML. These results provide useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood survival
Outcome and quality of life after surgically treated ankle fractures in patients 65 years or older
<p>Abstract</p> <p>Background</p> <p>Despite high incidence of ankle fractures in the elderly, studies evaluating outcome and impact of quality of life in this age group specifically are sparse. The aim of this study was to evaluate outcome and quality of life 6 and 12 months after injury in patients 65 years or older who had been operated on due to an ankle fracture.</p> <p>Methods</p> <p>Sixty patients 65 years or older were invited to participate in the study. 6 and 12 months after the injury a questionnaire including inquiry to participate, the Olerud-Molander Ankle Score (OMAS), Short-Form 36 (SF-36), Linear Analogue Scale (LAS), Self-rated Ankle Function and some supplementary questions was sent home to the patients. The supplementary questions concerned subjective experience of ankle instability, sporting and physical activity level before injury and recaptured activity level at follow-ups, need of walking aid before injury, state of living before injury and at follow-ups and co-morbidities. After the 12-month follow-up the patients were also called for a radiological examination.</p> <p>Results</p> <p>Fifty patients (83%) answered the questionnaire at 6-month and 46 (77%) at the 12-month follow-up. Although, 45 (90%) fractures were low-energy trauma 44 (88%) were bi- or trimalleolar and post-operative reduction results were complete in 23 (46%) ankles. The median OMAS improved from 60 (Interquartile range (IQR) 36) at 6-month to 70 (IQR 35) at 12-month (p = 0.002), but at 12-month still sixty percent or more of the patients reported pain, swelling, problems when stair-climbing and reduced activities of daily life. Twenty (40%) rated their ankle function as 'good' or 'very good' at 6-month and 30 (60%) at 12-month. Forty-one (82%) were physically active before injury but still one year after only 18/41 had returned to their pre-injury physical activity level. According to SF-36 four dimensions differed from the age- and gender matched normative data of the Swedish population, 'physical function', 'role physical' and 'role emotional' were below norms at 6-month for women (p = 0.010, p = 0.024 and 0.031) and 'general health' was above norms at 12-month for men (p = 0.044).</p> <p>Conclusion</p> <p>One year after surgically treated ankle fractures a majority of patients continue to have symptoms and reported functional limitations. However, SF-36 scores indicate that only females had functional status below the age- and gender matched normative data of the Swedish population.</p
Differential Coupling of Self-Renewal Signaling Pathways in Murine Induced Pluripotent Stem Cells
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs), exhibiting properties similar to those of embryonic stem cells (ESCs), has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K) signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors
Effects of a training program after surgically treated ankle fracture: a prospective randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>Despite conflicting results after surgically treated ankle fractures few studies have evaluated the effects of different types of training programs performed after plaster removal. The aim of this study was to evaluate the effects of a 12-week standardised but individually suited training program (training group) versus usual care (control group) after plaster removal in adults with surgically treated ankle fractures.</p> <p>Methods</p> <p>In total, 110 men and women, 18-64 years of age, with surgically treated ankle fracture were included and randomised to either a 12-week training program or to a control group. Six and twelve months after the injury the subjects were examined by the same physiotherapist who was blinded to the treatment group. The main outcome measure was the Olerud-Molander Ankle Score (OMAS) which rates symptoms and subjectively scored function. Secondary outcome measures were: quality of life (SF-36), timed walking tests, ankle mobility tests, muscle strength tests and radiological status.</p> <p>Results</p> <p>52 patients were randomised to the training group and 58 to the control group. Five patients dropped out before the six-month follow-up resulting in 50 patients in the training group and 55 in the control group. Nine patients dropped out between the six- and twelve-month follow-up resulting in 48 patients in both groups. When analysing the results in a mixed model analysis on repeated measures including interaction between age-group and treatment effect the training group demonstrated significantly improved results compared to the control group in subjects younger than 40 years of age regarding OMAS (p = 0.028), muscle strength in the plantar flexors (p = 0.029) and dorsiflexors (p = 0.030).</p> <p>Conclusion</p> <p>The results of this study suggest that when adjusting for interaction between age-group and treatment effect the training model employed in this study was superior to usual care in patients under the age of 40. However, as only three out of nine outcome measures showed a difference, the beneficial effect from an additional standardised individually suited training program can be expected to be limited. There is need for further studies to elucidate how a training program should be designed to increase and optimise function in patients middle-aged or older.</p> <p>Trial Registration</p> <p>Current Controlled Trials ACTRN12609000327280</p
Low documentation of chronic kidney disease among high-risk patients in a managed care population: a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>Early detection of chronic kidney disease (CKD) is sub-optimal among the general population and among high risk patients. The prevalence and impact of major CKD risk factors, diabetes (DM) and hypertension (HTN), on CKD documentation among managed care populations have not been previously reported. We examined this issue in a Kaiser Permanente Georgia (KPG) CKD cohort.</p> <p>Methods</p> <p>KPG enrollees were included in the CKD cohort if they had eGFRs between 60 and 365 days apart that were <90 ml/min during 1999-2006. The current analysis is restricted to participants with eGFR 10-59 ml/min/1.73 m<sup>2</sup>. CKD documentation was defined as a presenting diagnosis of CKD by a primary care physician or nephrologist using ICD-9 event codes. The association between CKD documentation and DM and HTN were assessed with multivariate logistic regression models.</p> <p>Results</p> <p>Of the 50,438 subjects within the overall KPG CKD cohort, 20% (N = 10,266) were eligible for inclusion in the current analysis. Overall, CKD diagnosis documentation was low; only 14.4% of subjects had an event-based CKD diagnosis at baseline. Gender and types 2 diabetes interacted on CKD documentation. The prevalence of CKD documentation increased with the presence of hypertension and/or type 2 diabetes, but type 2 diabetes had a lower effect on CKD documentation. In multivariate analysis, significant predictors of CKD documentation were eGFR, hypertension, type 2 diabetes, congestive heart failure, peripheral artery disease, statin use, age and gender. CKD documentation was lower among women than similarly affected men.</p> <p>Conclusion</p> <p>Among patients with an eGFR 10-59, documentation of CKD diagnosis by primary and subspecialty providers is low within a managed care patient cohort. Gender disparities in CKD documentation observed in the general population were also present among KPG CKD enrollees.</p
Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions
Maintaining undifferentiated mouse embryonic stem cell (mESC) culture has been a major challenge as mESCs cultured in Leukemia Inhibitory Factor (LIF) conditions exhibit spontaneous differentiation, fluctuating expression of pluripotency genes, and genes of specialized cells. Here we show that, in sharp contrast to the mESCs seeded on the conventional rigid substrates, the mESCs cultured on the soft substrates that match the intrinsic stiffness of the mESCs and in the absence of exogenous LIF for 5 days, surprisingly still generated homogeneous undifferentiated colonies, maintained high levels of Oct3/4, Nanog, and Alkaline Phosphatase (AP) activities, and formed embryoid bodies and teratomas efficiently. A different line of mESCs, cultured on the soft substrates without exogenous LIF, maintained the capacity of generating homogeneous undifferentiated colonies with relatively high levels of Oct3/4 and AP activities, up to at least 15 passages, suggesting that this soft substrate approach applies to long term culture of different mESC lines. mESC colonies on these soft substrates without LIF generated low cell-matrix tractions and low stiffness. Both tractions and stiffness of the colonies increased with substrate stiffness, accompanied by downregulation of Oct3/4 expression. Our findings demonstrate that mESC self-renewal and pluripotency can be maintained homogeneously on soft substrates via the biophysical mechanism of facilitating generation of low cell-matrix tractions
- …
