397 research outputs found

    Characterisation of a recombinant β-xylosidase (xylA) from Aspergillus oryzae expressed in Pichia pastoris

    Get PDF
    β-xylosidases catalyse the hydrolysis of short chain xylooligosaccharides from their non-reducing ends into xylose. In this study we report the heterologous expression of Aspergillus oryzae β-xylosidase (XylA) in Pichia pastoris under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The recombinant enzyme was optimally active at 55°C and pH 4.5 with Km and Vmax values of 1.0 mM and 250 μmol min−1 mg−1 respectively against 4-nitrophenyl β-xylopyranoside. Xylose was a competitive inhibitor with a Ki of 2.72 mM, whereas fructose was an uncompetitive inhibitor reducing substrate binding affinity (Km) and conversion efficiency (Vmax). The enzyme was characterised to be an exo-cutting enzyme releasing xylose from the non-reducing ends of β-1,4 linked xylooligosaccharides (X2, X3 and X4). Catalytic conversion of X2, X3 and X4 decreased (Vmax and kcat) with increasing chain length

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Brief Report: Sensorimotor Gating in Idiopathic Autism and Autism Associated with Fragile X Syndrome

    Get PDF
    Prepulse inhibition (PPI) may useful for exploring the proposed shared neurobiology between idiopathic autism and autism caused by FXS. We compared PPI in four groups: typically developing controls (n = 18), FXS and autism (FXS+A; n = 15), FXS without autism spectrum disorder (FXS−A; n = 17), and idiopathic autism (IA; n = 15). Relative to controls, the FXS+A (p < 0.002) and FXS−A (p < 0.003) groups had impaired PPI. The FXS+A (p < 0.01) and FXS−A (p < 0.03) groups had lower PPI than the IA group. Prolonged startle latency was seen in the IA group. The differing PPI profiles seen in the FXS+A and IA indicates these groups may not share a common neurobiological abnormality of sensorimotor gating

    Reliability of Eye Tracking and Pupillometry Measures in Individuals with Fragile X Syndrome

    Get PDF
    Recent insight into the underlying molecular and cellular mechanisms of fragile X syndrome (FXS) has led to the proposal and development of new pharmaceutical treatment strategies, and the initiation of clinical trials aimed at correcting core symptoms of the developmental disorder. Consequently, there is an urgent and critical need for outcome measures that are valid for quantifying specific symptoms of FXS and that are consistent across time. We used eye tracking to evaluate test–retest reliability of gaze and pupillometry measures in individuals with FXS and we demonstrate that these measures are viable options for assessing treatment-specific outcomes related to a core behavioral feature of the disorder

    Selection of a core set of RILs from Forrest × Williams 82 to develop a framework map in soybean

    Get PDF
    Soybean BAC-based physical maps provide a useful platform for gene and QTL map-based cloning, EST mapping, marker development, genome sequencing, and comparative genomic research. Soybean physical maps for “Forrest” and “Williams 82” representing the southern and northern US soybean germplasm base, respectively, have been constructed with different fingerprinting methods. These physical maps are complementary for coverage of gaps on the 20 soybean linkage groups. More than 5,000 genetic markers have been anchored onto the Williams 82 physical map, but only a limited number of markers have been anchored to the Forrest physical map. A mapping population of Forrest × Williams 82 made up of 1,025 F8 recombinant inbred lines (RILs) was used to construct a reference genetic map. A framework map with almost 1,000 genetic markers was constructed using a core set of these RILs. The core set of the population was evaluated with the theoretical population using equality, symmetry and representativeness tests. A high-resolution genetic map will allow integration and utilization of the physical maps to target QTL regions of interest, and to place a larger number of markers into a map in a more efficient way using a core set of RILs

    Identification of QTL underlying vitamin E contents in soybean seed among multiple environments

    Get PDF
    Vitamin E (VE) in soybean seed has value for foods, medicines, cosmetics, and animal husbandry. Selection for higher VE contents in seeds along with agronomic traits was an important goal for many soybean breeders. In order to map the loci controlling the VE content, F5-derived F6 recombinant inbred lines (RILs) were advanced through single-seed-descent (SSD) to generate a population including 144 RILs. The population was derived from a cross between ‘OAC Bayfield’, a soybean cultivar with high VE content, and ‘Hefeng 25’, a soybean cultivar with low VE content. A total of 107 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. Seed VE contents were analyzed by high performance liquid chromatography for multiple years and locations (Harbin in 2007 and 2008, Hulan in 2008 and Suihua in 2008). Four QTL associated with α-Toc (on four linkage groups, LGs), eight QTL associated with γ-Toc (on eight LGs), four QTL associated with δ-Toc (on four LGs) and five QTL associated with total VE (on four LGs) were identified. A major QTL was detected by marker Satt376 on linkage group C2 and associated with α-Toc (0.0012 > P > 0.0001, 5.0% < R2 < 17.0%, 25.1 < α-Toc < 30.1 μg g−1), total VE (P < 0.0001, 7.0% < R2 < 10.0%, 118.2 < total VE < 478.3 μg g−1). A second QTL detected by marker Satt286 on LG C2 was associated with γ-Toc (0.0003 > P > 0.0001, 6.0% < R2 < 13.0%, 141.5 < γ-Toc < 342.4 μg g−1) and total VE (P < 0.0001, 2.0% < R2 < 9.0%, 353.9 < total VE < 404.0 μg g−1). Another major QTL was detected by marker Satt266 on LG D1b that was associated with α-Toc (0.0002 > P > 0.0001, 4.0% < R2 < 6.0%, 27.7 < α-Toc < 43.7 μg g−1) and γ-Toc (0.0032 > P > 0.0001, 3.0% < R2 < 10.0%, 69.7 < γ-Toc < 345.7 μg g−1). Since beneficial alleles were all from ‘OAC Bayfield’, it was concluded that these three QTL would have great potential value for marker assisted selection for high VE content

    Screening mutations of OTOF gene in Chinese patients with auditory neuropathy, including a familial case of temperature-sensitive auditory neuropathy

    Get PDF
    International audienceBackgroundMutations in OTOF gene, encoding otoferlin, cause DFNB9 deafness and non-syndromic auditory neuropathy (AN). The aim of this study is to identify OTOF mutations in Chinese patients with non-syndromic auditory neuropathy.Methods73 unrelated Chinese Han patients with AN, including one case of temperature sensitive non-syndromic auditory neuropathy (TS-NSRAN) and 92 ethnicity-matched controls with normal hearing were screened. Forty-five pairs of PCR primers were designed to amplify all of the exons and their flanking regions of the OTOF gene. The PCR products were sequenced and analyzed for mutation identification.ResultsFive novel possibly pathogenic variants (c.1740delC, c.2975_2978delAG, c.1194T>A, c.1780G>A, c.4819C > T) were identified in the group of 73 AN patients, in which two novel mutant alleles (c.2975_2978delAG + c.4819C > T) were identified in one Chinese TS-NSRAN case. Besides, 10 non-pathogenic variants of the OTOF gene were found in AN patients and controls.ConclusionsScreening revealed that mutations in the OTOF gene account for AN in 4 of 73(5.5%) sporadic AN patients, which shows a lower genetic load of that gene in contrast to the previous studies based on other populations. Notably, we found two novel mutant alleles related to temperature sensitive non-syndromic auditory neuropathy. This mutation screening study further confirms that the OTOF gene contributes to ANs and to TS-NSRAN
    corecore