672 research outputs found

    Editorial: The Mammary Stroma in Normal Development and Function

    Get PDF
    The mammary gland can no longer be simply viewed as an organ composed of epithelial cells within a passive stromal microenvironment. Many lines of evidence have evolved to reinforce the notion that mammary epithelial cell growth, differentiation, lactation and progression to cancer involves bidirectional interactions between the epithelial population and its surrounding stroma. Within this stroma are numerous systems that are all capable of modulating epithelial function. In this context, the mammary stroma is not simply a depot of adipose tissue in which mammary epithelial cells undertake a unique growth and differentiation process, although adipocytes can impart numerous modulatory signals to epithelial cells, and vice versa. Rather, the stromal environment constitutes and supports a critical vasculature that supplies nutrients and endocrine cues, a lymphatic system that not only removes metabolites but also provides an intimate interface with the immune system, and an extracellular matrix scaffold in which epithelial cells grow, differentiate and regress. Ultimately all of these components play a critical role in directing the epithelial phenotype during normal mammary gland growth and function. An increasing appreciation for these different systems demands a view of mammary epithelial cells in a much different light, and further necessitates the development of model systems that incorporate and integrate increasing complexity

    RMDAP: A Versatile, Ready-To-Use Toolbox for Multigene Genetic Transformation

    Get PDF
    Background: The use of transgenes to improve complex traits in crops has challenged current genetic transformation technology for multigene transfer. Therefore, a multigene transformation strategy for use in plant molecular biology and plant genetic breeding is thus needed. Methodology/Principal Findings: Here we describe a versatile, ready-to-use multigene genetic transformation method, named the Recombination-assisted Multifunctional DNA Assembly Platform (RMDAP), which combines many of the useful features of existing plant transformation systems. This platform incorporates three widely-used recombination systems, namely, Gateway technology, in vivo Cre/loxP and recombineering into a highly efficient and reliable approach for gene assembly. RMDAP proposes a strategy for gene stacking and contains a wide range of flexible, modular vectors offering a series of functionally validated genetic elements to manipulate transgene overexpression or gene silencing involved in a metabolic pathway. In particular, the ability to construct a multigene marker-free vector is another attractive feature. The built-in flexibility of original vectors has greatly increased the expansibility and applicability of the system. A proof-ofprinciple experiment was confirmed by successfully transferring several heterologous genes into the plant genome. Conclusions/Significance: This platform is a ready-to-use toolbox for full exploitation of the potential for coordinate regulation of metabolic pathways and molecular breeding, and will eventually achieve the aim of what we call ‘‘one-sto

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Removal of AU Bias from Microarray mRNA Expression Data Enhances Computational Identification of Active MicroRNAs

    Get PDF
    Elucidation of regulatory roles played by microRNAs (miRs) in various biological networks is one of the greatest challenges of present molecular and computational biology. The integrated analysis of gene expression data and 3′-UTR sequences holds great promise for being an effective means to systematically delineate active miRs in different biological processes. Applying such an integrated analysis, we uncovered a striking relationship between 3′-UTR AU content and gene response in numerous microarray datasets. We show that this relationship is secondary to a general bias that links gene response and probe AU content and reflects the fact that in the majority of current arrays probes are selected from target transcript 3′-UTRs. Therefore, removal of this bias, which is in order in any analysis of microarray datasets, is of crucial importance when integrating expression data and 3′-UTR sequences to identify regulatory elements embedded in this region. We developed visualization and normalization schemes for the detection and removal of such AU biases and demonstrate that their application to microarray data significantly enhances the computational identification of active miRs. Our results substantiate that, after removal of AU biases, mRNA expression profiles contain ample information which allows in silico detection of miRs that are active in physiological conditions

    The Association of AMPK with ULK1 Regulates Autophagy

    Get PDF
    Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex

    GPR50 Interacts with TIP60 to Modulate Glucocorticoid Receptor Signalling

    Get PDF
    GPR50 is an orphan G-protein coupled receptor most closely related to the melatonin receptors. The physiological function of GPR50 remains unclear, although our previous studies implicate the receptor in energy homeostasis. Here, we reveal a role for GPR50 as a signalling partner and modulator of the transcriptional co-activator TIP60. This interaction was identified in a yeast-two-hybrid screen, and confirmed by co-immunoprecipitation and co-localisation of TIP60 and GPR50 in HEK293 cells. Co-expression with TIP60 increased perinuclear localisation of full length GPR50, and resulted in nuclear translocation of the cytoplasmic tail of the receptor, suggesting a functional interaction of the two proteins. We further demonstrate that GPR50 can enhance TIP60-coactiavtion of glucocorticoid receptor (GR) signalling. In line with in vitro results, repression of pituitary Pomc expression, and induction of gluconeogenic genes in liver in response to the GR agonist, dexamethasone was attenuated in Gpr50−/− mice. These results identify a novel role for GPR50 in glucocorticoid receptor signalling through interaction with TIP60

    Waveforms of molecular oscillations reveal circadian timekeeping mechanisms

    Get PDF
    Circadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping. We find that the cost of synthesizing proteins with particular waveforms can be substantially reduced by rhythmic protein half-lives over time, as supported by previous plant and mammalian data, as well as our own seedling experiment. We also find that previously-enigmatic, cyclic expression of positive arm components within the mammalian and insect clocks allows both a broad range of peak time differences between protein waveforms and the symmetries of the waveforms about the peak times. Such various peak-time differences may facilitate tissue-specific or developmental stage-specific multicellular processes. Our waveform-guided approach can be extended to various biological oscillators, including cell-cycle and synthetic genetic oscillators.Comment: Supplementary material is available at the journal websit

    Antibodies for Assessing Circadian Clock Proteins in the Rodent Suprachiasmatic Nucleus

    Get PDF
    Research on the mechanisms underlying circadian rhythmicity and the response of brain and body clocks to environmental and physiological challenges requires assessing levels of circadian clock proteins. Too often, however, it is difficult to acquire antibodies that specifically and reliably label these proteins. Many of these antibodies also lack appropriate validation. The goal of this project was to generate and characterize antibodies against several circadian clock proteins. We examined mice and hamsters at peak and trough times of clock protein expression in the suprachiasmatic nucleus (SCN). In addition, we confirmed specificity by testing the antibodies on mice with targeted disruption of the relevant genes. Our results identify antibodies against PER1, PER2, BMAL1 and CLOCK that are useful for assessing circadian clock proteins in the SCN by immunocytochemistry

    Interfering RNA and HIV: Reciprocal Interferences

    Get PDF
    In this review, a quick presentation of what interfering RNA (iRNA) are—small RNA able to exert an inhibition on gene expression at a posttranscriptional level, based on sequence homology between the iRNA and the mRNA—will be given. The many faces of the interrelations between iRNA and viruses, particularly HIV, will be reviewed. Four kinds of interactions have been described: i) iRNA of viral origin blocking viral RNA, ii) iRNA of viral origin downregulating cellular mRNA, iii) iRNA of cellular origin (microRNA) targeting viral RNA, and iv) microRNA downregulating cellular mRNA encoding cell proteins used by the virus for its replication. Next, HIV strategies to manipulate these interrelations will be considered: suppression of iRNA biosynthesis by Tat, trapping by the HIV TAR sequence of a cell component, TRBP, necessary for iRNA production and action, and induction by the virus of some microRNA together with suppression of others. Then, we will discuss the putative effects of these mutual influences on viral replication as well as on viral latency, immune response, and viral cytopathogenicity. Finally, the potential consequences on the human infection of genetic polymorphisms in microRNA genes and the therapeutic potential of iRNA will be presented
    corecore