33,571 research outputs found

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Bending instability characteristics of double-walled carbon nanotubes

    Get PDF
    The bending instability characteristics of double-walled carbon nanotubes (DWNTs) of various configurations are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube interaction energy is calculated using the van der Waals interatomic potential. This study shows that the bending instability may take place through the formation of a single kink in the midpoint of a DWNT or two kinks, placed symmetrically about the midpoint, depending on both the tube length and diameter. The double-kink mode is more favorable for longer DWNTs with the same diameter, and there exists a threshold length for a fixed diameter, below which the single-kink mode occurs at the onset of the bending instability and above which the double-kink mode prevails. The onset characteristic of bending instability is determined by the effectiveness of the intertube interaction in transferring the load from the outer tube onto the inner tube, and the load-transfer effectiveness increases with the increasing tube length. For a fixed length/diameter ratio, the load-transfer effectiveness is found to decrease with the increasing diameter for smaller tubes while it increases for larger tubes, and, thus, the double-kink mode can prevail for both small DWNTs and large DWNTs. ©2005 The American Physical Society.published_or_final_versio

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente

    Quantifying N response and N use efficiency in Rice-Wheat (RW) cropping systems under different water management

    Get PDF
    About 0·10 of the food supply in China is produced in rice¿wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE. Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N suppl

    The protection of glycyrrhetinic acid (GA) towards acetaminophen (APAP)-induced toxicity partially through fatty acids metabolic pathway

    Get PDF
    Background: Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of compounds preventing APAP-induced toxicity.Aims: To investigate the protection mechanism of glycyrrhetinic acid towards APAP-induced liver damage using metabolomics method.Methods: APAP-induced liver toxicity model was made through intraperitoneal injection (i.p.) of APAP (400 mg/kg). Glycyrrhetinic acid was dissolved in corn oil, and intraperitoneal injection (i.p.) of glycyrrhetinic acid (500 mg/kg body weight) was performed for 20 days before the injection of APAP. UPLC-ESI-QTOF MS was employed to analyze the metabolomic profile of serum samples.Results: The pre-treatment of glycyrrhetinic acid significantly protected APAP-induced toxicity, indicated by the histology of liver, the activity of ALT and AST. Metabolomics showed that the level of   palmtioylcarnitine and oleoylcarnitine significantly increased in serum of APAP-treated mice, and the pre-treatment with GA can prevent this elevation of these two fatty acid-carnitines.Conclusion: Reversing the metabolism pathway of fatty acid is an important mechanism for the protection of glycyrrhetinic acid towards acetaminophen-induced liver toxicity.Keywords: Glycyrrhetinic acid (GA), acetaminophen (APAP), metabolomics, fatty aci

    Back reaction, covariant anomaly and effective action

    Full text link
    In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.Comment: 17 page
    corecore