1,793 research outputs found

    All Signs Point South: A Canadian’s Journey Through an American Student Affairs Program

    Get PDF
    The path to a career in student affairs is rarely a simple one. Aspiring professionals come into this field from many different institutional and educational backgrounds and for a myriad of reasons, but as unique as each of these individuals are, they share some similarities. Framed by literature on both general career decisions and those specific to student affairs and higher education, this article tracks the path of a Canadian student on his journey through an American graduate program. As the author approaches graduation, he reflects on the choices that led him to where he is today, the choices that will guide his next steps in the profession, and the implications those choices have for other Canadian students who wish to enter the field

    Evaluation of automated cell disruptor methods for oomycetous and ascomycetous model organisms

    Get PDF
    Two automated cell disruptor-based methods for RNA extraction, disruption of thawed cells submerged in TRIzol Reagent (method QP), and direct disruption of frozen cells on dry ice (method CP), were optimized for a model oomycete, Phytophthora capsici, and a model filamentous ascomycete, Neurospora crassa. The results were compared with more conventional methods of manual grinding in a mortar and pestle under liquid nitrogen (method M&P) and those using lyophilized samples. A chip-based electrophoresis system showed that methods CP and M&P yielded high integrity RNA from both P. capsici and N. crassa. In contrast, method QP and lyophilized sample-based methods resulted in inconsistent RNA integrity between the two organisms, indicating they are not safe alternatives for method M&P. Microarray mRNA profiling for P. capsici revealed alterations in global mRNA profiles in those samples that the chip-based electrophoresis detected slight decreases in RNA integrity. Despite this, RNA integrity of these samples could still be high enough to pass conventional stringent quality control measures. This demonstrated the necessity of global mRNA profiling for the evaluation of RNA extraction protocols

    Fundamental Limits of Low-Density Spreading NOMA with Fading

    Full text link
    Spectral efficiency of low-density spreading non-orthogonal multiple access channels in the presence of fading is derived for linear detection with independent decoding as well as optimum decoding. The large system limit, where both the number of users and number of signal dimensions grow with fixed ratio, called load, is considered. In the case of optimum decoding, it is found that low-density spreading underperforms dense spreading for all loads. Conversely, linear detection is characterized by different behaviors in the underloaded vs. overloaded regimes. In particular, it is shown that spectral efficiency changes smoothly as load increases. However, in the overloaded regime, the spectral efficiency of low- density spreading is higher than that of dense spreading

    EMaP: Explainable AI with Manifold-based Perturbations

    Full text link
    In the last few years, many explanation methods based on the perturbations of input data have been introduced to improve our understanding of decisions made by black-box models. The goal of this work is to introduce a novel perturbation scheme so that more faithful and robust explanations can be obtained. Our study focuses on the impact of perturbing directions on the data topology. We show that perturbing along the orthogonal directions of the input manifold better preserves the data topology, both in the worst-case analysis of the discrete Gromov-Hausdorff distance and in the average-case analysis via persistent homology. From those results, we introduce EMaP algorithm, realizing the orthogonal perturbation scheme. Our experiments show that EMaP not only improves the explainers' performance but also helps them overcome a recently-developed attack against perturbation-based methods.Comment: 29 page

    3D Quantification of Ultrasound Images: Application to Mouse Embryo Imaging In Vivo

    Get PDF
    International audienceHigh frequency ultrasound imaging has become an effective tool for anatomical mice studies. This work is focused on 3D quantification of mouse embryo development to extract pertinent information of its evolution. A series of B-Scan ultrasound images was acquired at different spatial positions along the embryo. A 3D deformable model was used to segment the images. A pregnant female mouse at embryonic day 14.5 was imaged with an ATL HDI 5000, 7-15MHz linear array. The probe was moved by a step by step motor along the abdomen of the mouse. 3D segmentation results are presented including volume quantification of the embryo

    Beyond Traditional Approaches: Multi-Task Network for Breast Ultrasound Diagnosis

    Full text link
    Breast Ultrasound plays a vital role in cancer diagnosis as a non-invasive approach with cost-effective. In recent years, with the development of deep learning, many CNN-based approaches have been widely researched in both tumor localization and cancer classification tasks. Even though previous single models achieved great performance in both tasks, these methods have some limitations in inference time, GPU requirement, and separate fine-tuning for each model. In this study, we aim to redesign and build end-to-end multi-task architecture to conduct both segmentation and classification. With our proposed approach, we achieved outstanding performance and time efficiency, with 79.8% and 86.4% in DeepLabV3+ architecture in the segmentation task.Comment: 7 pages, 3 figure
    • …
    corecore