450 research outputs found

    Anatomic Insights into Disrupted Small-World Networks in Pediatric Posttraumatic Stress Disorder.

    Get PDF
    Purpose To use diffusion-tensor (DT) imaging and graph theory approaches to explore the brain structural connectome in pediatric posttraumatic stress disorder (PTSD). Materials and Methods This study was approved by the relevant research ethics committee, and all participants’ parents or guardians provided informed consent. Twenty-four pediatric patients with PTSD and 23 control subjects exposed to trauma but without PTSD were recruited after the 2008 Sichuan earthquake. The structural connectome was constructed by using DT imaging tractography and thresholding the mean fractional anisotropy of 90 brain regions to yield 90 × 90 partial correlation matrixes. Graph theory analysis was used to examine the group-specific topologic properties, and nonparametric permutation tests were used for group comparisons of topologic metrics. Results Both groups exhibited small-world topology. However, patients with PTSD showed an increase in the characteristic path length (P = .0248) and decreases in local efficiency (P = .0498) and global efficiency (P = .0274). Furthermore, patients with PTSD showed reduced nodal centralities, mainly in the default mode, salience, central executive, and visual regions (P < .05, corrected for false-discovery rate). The Clinician-Administered PTSD Scale score was negatively correlated with the nodal efficiency of the left superior parietal gyrus (r = −0.446, P = .043). Conclusion The structural connectome showed a shift toward “regularization,” providing a structural basis for functional alterations of pediatric PTSD. These abnormalities suggest that PTSD can be understood by examining the dysfunction of large-scale spatially distributed neural networks

    Functional Brain Connectome and Its Relation to Hoehn and Yahr Stage in Parkinson Disease.

    Get PDF
    Purpose To use resting-state functional magnetic resonance (MR) imaging and graph theory approaches to investigate the brain functional connectome and its potential relation to disease severity in Parkinson disease (PD). Materials and Methods This case-control study was approved by the local research ethics committee, and all participants provided informed consent. There were 153 right-handed patients with PD and 81 healthy control participants recruited who were matched for age, sex, and handedness to undergo a 3-T resting-state functional MR examination. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 90 brain regions, and the topologic properties were analyzed by using graph theory approaches. Nonparametric permutation tests were used to compare topologic properties, and their relationship to disease severity was assessed. Results The functional connectome in PD showed abnormalities at the global level (ie, decrease in clustering coefficient, global efficiency, and local efficiency, and increase in characteristic path length) and at the nodal level (decreased nodal centralities in the sensorimotor cortex, default mode, and temporal-occipital regions; P < .001, false discovery rate corrected). Further, the nodal centralities in left postcentral gyrus and left superior temporal gyrus correlated negatively with Unified Parkinson's Disease Rating Scale III score (P = .038, false discovery rate corrected, r = -0.198; and P = .009, false discovery rate corrected, r = -0.270, respectively) and decreased with increasing Hoehn and Yahr stage in patients with PD. Conclusion The configurations of brain functional connectome in patients with PD were perturbed and correlated with disease severity, notably with those responsible for motor functions. These results provide topologic insights into understanding the neural functional changes in relation to disease severity of PD. © RSNA, 2017 Online supplemental material is available for this article

    Magnetic fields in noncommutative quantum mechanics

    Full text link
    We discuss various descriptions of a quantum particle on noncommutative space in a (possibly non-constant) magnetic field. We have tried to present the basic facts in a unified and synthetic manner, and to clarify the relationship between various approaches and results that are scattered in the literature.Comment: Dedicated to the memory of Julius Wess. Work presented by F. Gieres at the conference `Non-commutative Geometry and Physics' (Orsay, April 2007

    Thermal plasma synthesis of Li2S nanoparticles for application in lithium-sulfur batteries

    Get PDF
    Abstract : Inductively-coupled thermal plasma processes were used to produce nanosized Li2S. Prior to the syntheses, the feasibility of forming Li2S was first evaluated using FactSage by considering the phase diagrams of sulfur and different lithium precursors in reducing atmospheres; Li2O, LiOH·H2O, Li2CO3 and Li2SO4·H2O all showed promises in producing Li2S nanoparticles, as confirmed by experiments. Argon and hydrogen mixtures were used as plasma gases, and a carbothermal reduction was implemented for Li2SO4·H2O. In addition, carbon-coated Li2S nanoparticles were synthesized with downstream injection of methane. Carbon was shown to stabilize Li2S upon contact with ambient air. The Li2S nanoparticles were electrochemically tested in half-cells using electrolytes containing LiNO3 or Li2S6 as additives. It was found that adding LiNO3 to the electrolyte was detrimental to the electrochemical performance of Li2S, whereas the combination of Li2S6 and LiNO3 as additives doubled the charge and discharge capacities of the half-cell over 10 cycles

    Differential expression of microRNAs during fiber development between fuzzless- lintless mutant and its wild-type allotetraploid cotton

    Get PDF
    Cotton is one of the most important textile crops but little is known how microRNAs regulate cotton fiber development. Using a well-studied cotton fiberless mutant Xu-142-fl, we compared 54 miRNAs for their expression between fiberless mutant and its wildtype. In wildtype Xu-142, 26 miRNAs are involved in cotton fiber initiation and 48 miRNAs are related to primary wall synthesis and secondary wall thickening. Thirty three miRNAs showed different expression in fiber initiation between Xu-142 and Xu- 142-fl. These miRNAs potentially target 723 protein-coding genes, including transcription factors, such as MYB, ARF, and LRR. ARF18 was newly predicted targets of miR160a, and miR160a was expressed at higher level in −2DPA of Xu-142-fl compared with Xu-142. Furthermore, the result of Gene Ontology- based term classification (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows that miRNA targets were classified to 222 biological processes, 64 cellular component and 42 molecular functions, enriched in 22 KOG groups, and classified into 28 pathways. Together, our study provides evidence for better understanding of miRNA regulatory roles in the process of fiber development, which is helpful to increase fiber yield and improve fiber quality

    Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions

    Get PDF
    To characterize crustal anisotropy beneath the central North China Craton (CNCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54Â s, with an average of 0.25 ± 0.08Â s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to fossil crustal anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially

    Increased Prothrombin, Apolipoprotein A-IV, and Haptoglobin in the Cerebrospinal Fluid of Patients with Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disease caused by an unstable CAG trinucleotide repeat expansion. The need for biomarkers of onset and progression in HD is imperative, since currently reliable outcome measures are lacking. We used two-dimensional electrophoresis and mass spectrometry to analyze the proteome profiles in cerebrospinal fluid (CSF) of 6 pairs of HD patients and controls. Prothrombin, apolipoprotein A-IV (Apo A-IV) and haptoglobin were elevated in CSF of the HD patients in comparison with the controls. We used western blot as a semi-quantified measurement for prothrombin and Apo A-IV, as well as enzyme linked immunosorbent assay (ELISA) for measurement of haptoglobin, in 9 HD patients and 9 controls. The albumin quotient (Qalb), a marker of blood-brain barrier (BBB) function, was not different between the HD patients and the controls. The ratios of CSF prothrombin/albumin (prothrombin/Alb) and Apo A-IV/albumin (Apo A-IV/Alb), and haptoglobin level were significantly elevated in HD. The ratio of CSF prothrombin/Alb significantly correlated with the disease severity assessed by Unified Huntington's Disease Rating Scale (UHDRS). The results implicate that increased CSF prothrombin, Apo A-IV, and haptoglobin may be involved in pathogenesis of HD and may serve as potential biomarkers for HD

    CHAMPION: Chalmers Hierarchical Atomic, Molecular, Polymeric & Ionic Analysis Toolkit

    Get PDF
    We present CHAMPION: a software developed to automatically detect time-dependent bonds between atoms based on their dynamics, classify the local graph topology around them, and analyze the physicochemical properties of these topologies by statistical physics. In stark contrast to methodologies where bonds are detected based on static conditions such as cut-off distances, CHAMPION considers pairs of atoms to be bound only if they move together and act as a bound pair over time. Furthermore, the time-dependent global bond graph is possible to split into dynamically shifting connected components or subgraphs around a certain chemical motif and thereby allow the physicochemical properties of each such topology to be analyzed by statistical physics. Applicable to condensed matter and liquids in general, and electrolytes in particular, this allows both quantitative and qualitative descriptions of local structure, as well as dynamical processes such as speciation and diffusion. We present here a detailed overview of CHAMPION, including its underlying methodology, implementation and capabilities.Comment: 11 pages, 8 figure
    corecore