12,420 research outputs found
Electromagnetic Scattering and Statistic Analysis of Clutter from Oil Contaminated Sea Surface
In order to investigate the electromagnetic (EM) scattering characteristics of the three dimensional sea surface contaminated by oil, a rigorous numerical method multilevel fast multipole algorithm (MLFMA) is developed to preciously calculate the electromagnetic backscatter from the two-layered oil contaminated sea surface. Illumination window and resistive window are combined together to depress the edge current induced by artificial truncation of the sea surface. By using this combination, the numerical method can get a high efficiency at a less computation cost. The differences between backscatters from clean sea and oil contaminated sea are investigated with respect to various incident angles and sea states. Also, the distribution of the sea clutter is examined for the oil-spilled cases in this paper
Chiral geometry of higher excited bands in triaxial nuclei with particle-hole configuration
The lowest six rotational bands have been studied in the particle-rotor model
with the particle-hole configuration
and different triaxiality parameter . Both constant and spin-dependent
variable moments of inertial (CMI and VMI) are introduced. The energy spectra,
electromagnetic transition probabilities, angular momentum components and
-distribution have been examined. It is shown that, besides the band 1 and
band 2, the predicted band 3 and band 4 in the calculations of both CMI and VMI
for atomic nuclei with could be interpreted as chiral doublet
bands.Comment: 4 pages, 4 figure
Observation of Landau quantization and standing waves in HfSiS
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of
Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are
also pronounced in this compound. Here we report a systematic study of HfSiS by
scanning tunneling microscopy/spectroscopy at low temperature and high magnetic
field. The Rashba-split surface states are characterized by measuring Landau
quantization and standing waves, which reveal a quasi-linear dispersive band
structure. First-principles calculations based on density-functional theory are
conducted and compared with the experimental results. Based on these
investigations, the properties of the Rashba-split surface states and their
interplay with defects and collective modes are discussed.Comment: 6 pages, 5 figure
A General Information Theoretical Proof for the Second Law of Thermodynamics
We show that the conservation and the non-additivity of the information,
together with the additivity of the entropy make the entropy increase in an
isolated system. The collapse of the entangled quantum state offers an example
of the information non-additivity. Nevertheless, the later is also true in
other fields, in which the interaction information is important. Examples are
classical statistical mechanics, social statistics and financial processes. The
second law of thermodynamics is thus proven in its most general form. It is
exactly true, not only in quantum and classical physics but also in other
processes, in which the information is conservative and non-additive.Comment: 4 page
Strangeness spin, magnetic moment and strangeness configurations of the proton
The implications of the empirical signatures for the positivity of the
strangeness magnetic moment , and the negativity of the strangeness
contribution to the proton spin , on the possible
configurations of five quarks in the proton are analyzed. The empirical signs
for the values of these two observables can only be obtained in configurations
where the system is orbitally excited and the quark is in the
ground state. The configurations, in which the is orbitally excited,
which include the conventional congfiguration, with the
exception of that, in which the component has spin 2, yield negative
values for . Here the strangeness spin , the strangeness
magnetic moment and the axial coupling constant are calculated
for all possible configurations of the component of the proton. In
the configuration with flavor-spin symmetry, which is
likely to have the lowest energy, is positive and .Comment: 17 page
Payments per claim model of outstanding claims reserve based on fuzzy linear regression
There are uncertainties in factors such as inflation. Historical data and variable values are ambiguous. They lead to ambiguity in the assessment of outstanding claims reserves. The payments per claim model can only perform point estimation. But the fuzzy linear regression is based on fuzzy theory and can directly deal with uncertainty in data. Therefore, this paper proposes a payments per claim model based on fuzzy linear regression. The linear regression method and fuzzy least square method are used to estimate the parameters of the fuzzy regression equation. And the estimated results are introduced into the payments per claim model. Then, the predicted value of each accident reserve is obtained. This result is compared with that of the traditional payments per claim model. And we find that the payments per claim model of estimating the fuzzy linear regression parameters based on the linear programming method is more effective. The model gives the width of the compensation amount for each accident year. In addition, this model solves the problem that the traditional payments per claim model cannot measure the dynamic changes in reserves
A 3-D security modeling platform for social IoT environments
Social Internet-of-Things (SIoT) environment comprises not only smart devices but also the humans who interact with these IoT devices. The benefits of such system are overshadowed due to the cyber security issues. A novel approach is required to understand the security implication under such a dynamic environment while taking both the social and technical aspects into consideration. This paper addressed such challenges and proposed a 3-D security modeling platform that can capture and model the security requirements in the SIoT environment. The modeling process is graphical notation based and works as a security extension to the Business Process Model and Notation. Still, it utilizes the latest 3-D game technology; thus, the security extensions are generated through the third dimension. Consequently, the introduction of security extensions will not increase the complexity of the original SIoT scenario, while keeping all the key information on the same platform. Together with the proposed security ontology, these comprehensive security notations created a unique platform that aims at addressing the ever complicated security issues in the SIoT environment
Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model
In this paper, fuzzy theory and interacting multiple model are introduced into H∞ filter-based particle filter to propose a new fuzzy interacting multiple model H∞ particle filter based on current statistical model. Each model uses H∞ particle filter algorithm for filtering, in which the current statistical model can describe the maneuver of target accurately and H∞ filter can deal with the nonlinear system effectively. Aiming at the problem of large amount of probability calculation in interacting multiple model by using combination calculation method, our approach calculates each model matching probability through the fuzzy theory, which can not only reduce the calculation amount, but also improve the state estimation accuracy to some extent. The simulation results show that the proposed algorithm can be more accurate and robust to track maneuvering target
Tuning Jeff = 1/2 Insulating State via Electron Doping and Pressure in Double-Layered Iridate Sr3Ir2O7
Sr3Ir2O7 exhibits a novel Jeff=1/2 insulating state that features a splitting
between Jeff=1/2 and 3/2 bands due to spin-orbit interaction. We report a
metal-insulator transition in Sr3Ir2O7 via either dilute electron doping (La3+
for Sr2+) or application of high pressure up to 35 GPa. Our study of
single-crystal Sr3Ir2O7 and (Sr1-xLax)3Ir2O7 reveals that application of high
hydrostatic pressure P leads to a drastic reduction in the electrical
resistivity by as much as six orders of magnitude at a critical pressure, PC =
13.2 GPa, manifesting a closing of the gap; but further increasing P up to 35
GPa produces no fully metallic state at low temperatures, possibly as a
consequence of localization due to a narrow distribution of bonding angles
{\theta}. In contrast, slight doping of La3+ ions for Sr2+ ions in Sr3Ir2O7
readily induces a robust metallic state in the resistivity at low temperatures;
the magnetic ordering temperature is significantly suppressed but remains
finite for (Sr0.95La0.05)3Ir2O7 where the metallic state occurs. The results
are discussed along with comparisons drawn with Sr2IrO4, a prototype of the
Jeff = 1/2 insulator.Comment: five figure
- …