156 research outputs found

    Increased success probability in Hardy's nonlocality: Theory and demonstration

    Full text link
    Depending on the way one measures, quantum nonlocality might manifest more visibly. Using basis transformations and interactions on a particle pair, Hardy logically argued that any local hidden variable theory leads to a paradox. Extended from the original work, we introduce a quantum nonlocal scheme for n-particle systems using two distinct approaches. First, a theoretical model is derived with analytical results for Hardy's nonlocality conditions and probability. Second, a quantum simulation using quantum circuits is constructed that matches very well to the analytical theory. When demonstrated on real quantum computers for n=3, we obtain reasonable results compared to theory. Even at macroscopic scales as n grows, the success probability asymptotes 15.6%, which is stronger than previous results.Comment: 4 pages, 4 figure

    Immersed boundary method combined with proper generalized decomposition for simulation of a flexible filament in a viscous incompressible flow

    Get PDF
    In this paper, a combination of the Proper Generalized  Decomposition (PGD) with the Immersed Boundary method (IBM) for solving  fluid-filament interaction problem is proposed. In this combination, a  forcing term constructed by the IBM is introduced to Navier-Stokes equations  to handle the influence of the filament on the fluid flow. The PGD is  applied to solve the Poission's equation to find the fluid pressure  distribution for each time step. The numerical results are compared with  those by previous publications to illustrate the robustness and  effectiveness of the proposed method

    Viral pathogens associated with acute respiratory infections in central vietnamese children.

    Get PDF
    Hospitalized Vietnamese children with acute respiratory infection were investigated for 13 viral pathogens using multiplex-polymerase chain reaction. We enrolled 958 children of whom 659 (69%) had documented viral infection: rhinovirus (28%), respiratory syncytial virus (23%), influenza virus (15%), adenovirus (5%), human metapneumo virus (4.5%), parainfluenza virus (5%), and bocavirus (2%). These Vietnamese children had a range of respiratory viruses which underscores the need for enhanced acute respiratory infection surveillance in tropical developing countries

    Mothers screening for malnutrition by mid-upper arm circumference is non-inferior to community health workers: results from a large-scale pragmatic trial in rural Niger

    Get PDF
    Community health workers (CHWs) are recommended to screen for acute malnutrition in the community by assessing mid-upper arm circumference (MUAC) on children between 6 and 59 months of age. MUAC is a simple screening tool that has been shown to be a better predictor of mortality in acutely malnourished children than other practicable anthropometric indicators. This study compared, under program conditions, mothers and CHWs in screening for severe acute malnutrition (SAM) by color-banded MUAC tapes. METHODS: This pragmatic interventional, non-randomized efficacy study took place in two health zones of Niger's Mirriah District from May 2013 to April 2014. Mothers in Dogo (Mothers Zone) and CHWs in Takieta (CHWs Zone) were trained to screen for malnutrition by MUAC color-coded class and check for edema. Exhaustive coverage surveys were conducted quarterly, and relevant data collected routinely in the health and nutrition program. An efficacy and cost analysis of each screening strategy was performed. RESULTS: A total of 12,893 mothers and caretakers were trained in the Mothers Zone and 36 CHWs in the CHWs Zone, and point coverage was similar in both zones at the end of the study (35.14 % Mothers Zone vs 32.35 % CHWs Zone, p = 0.9484). In the Mothers Zone, there was a higher rate of MUAC agreement (75.4 % vs 40.1 %, p <0.0001) and earlier detection of cases, with median MUAC at admission for those enrolled by MUAC <115 mm estimated to be 1.6 mm higher using a smoothed bootstrap procedure. Children in the Mothers Zone were much less likely to require inpatient care, both at admission and during treatment, with the most pronounced difference at admission for those enrolled by MUAC < 115 mm (risk ratio = 0.09 [95 % CI 0.03; 0.25], p < 0.0001). Training mothers required higher up-front costs, but overall costs for the year were much lower (8,600USDvs8,600 USD vs 21,980 USD.). CONCLUSIONS: Mothers were not inferior to CHWs in screening for malnutrition at a substantially lower cost. Children in the Mothers Zone were admitted at an earlier stage of SAM and required fewer hospitalizations. Making mothers the focal point of screening strategies should be included in malnutrition treatment programs.BioMed Central open acces

    Obscured Activity: AGN, Quasars, Starbursts and ULIGs observed by the Infrared Space Observatory

    Full text link
    Some of the most active galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS), has enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star-formation as well as those containing a dominant active galactic nucleus (AGN). Mid infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid and far infrared. This was particularly useful since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry also revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based upon ISO data spanning the full range of luminosity and type of active galaxies.Comment: Accepted for publication in 'ISO science legacy - a compact review of ISO major achievements', Space Science Reviews - dedicated ISO issue. To be published by Springer in 2005. 62 pages (low resolution figures version). Higher resolution PDFs available from http://users.physics.uoc.gr/~vassilis/papers/VermaA.pdf or http://www.iso.vilspa.esa.es/science/SSR/Verma.pd

    Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions

    Get PDF
    Maintaining undifferentiated mouse embryonic stem cell (mESC) culture has been a major challenge as mESCs cultured in Leukemia Inhibitory Factor (LIF) conditions exhibit spontaneous differentiation, fluctuating expression of pluripotency genes, and genes of specialized cells. Here we show that, in sharp contrast to the mESCs seeded on the conventional rigid substrates, the mESCs cultured on the soft substrates that match the intrinsic stiffness of the mESCs and in the absence of exogenous LIF for 5 days, surprisingly still generated homogeneous undifferentiated colonies, maintained high levels of Oct3/4, Nanog, and Alkaline Phosphatase (AP) activities, and formed embryoid bodies and teratomas efficiently. A different line of mESCs, cultured on the soft substrates without exogenous LIF, maintained the capacity of generating homogeneous undifferentiated colonies with relatively high levels of Oct3/4 and AP activities, up to at least 15 passages, suggesting that this soft substrate approach applies to long term culture of different mESC lines. mESC colonies on these soft substrates without LIF generated low cell-matrix tractions and low stiffness. Both tractions and stiffness of the colonies increased with substrate stiffness, accompanied by downregulation of Oct3/4 expression. Our findings demonstrate that mESC self-renewal and pluripotency can be maintained homogeneously on soft substrates via the biophysical mechanism of facilitating generation of low cell-matrix tractions

    A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion

    Get PDF
    Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion

    Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops

    Get PDF
    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community
    • …
    corecore