102 research outputs found

    Tet1 and Tet2 Regulate 5-Hydroxymethylcytosine Production and Cell Lineage Specification in Mouse Embryonic Stem Cells

    Get PDF
    SummaryTET family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Here, we show that Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem cells (ESCs) and are induced concomitantly with 5hmC during reprogramming of fibroblasts to induced pluripotent stem cells. ESCs depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1 and display hyperactive Nodal signaling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in vitro. In Fgf4- and heparin-supplemented culture conditions, Tet1-depleted ESCs activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in midgestation embryo chimeras. Consistent with these findings, Tet1-depleted ESCs form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm, and ectopic appearance of trophoblastic giant cells. Thus, 5hmC is an epigenetic modification associated with the pluripotent state, and Tet1 functions to regulate the lineage differentiation potential of ESCs

    Theory and Validation of Magnetic Resonance Fluid Motion Estimation Using Intensity Flow Data

    Get PDF
    15 p.Background Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true reference information or ground truth. Methodology/Principal Findings In this study, we create flow vectors based on an ideal analytical vortex, and generate artificial signal-motion image data to verify our computational approach. The analytical and computed flow fields are compared to provide an error estimate of our methodology. The comparison shows that the fluid motion estimation approach using simulated MR data is accurate and robust enough for flow field mapping. To verify our methodology, we have tested the computational configuration on magnetic resonance images of cardiac blood and proved that the theory of magnetic resonance fluid motion estimation can be applicable practically. Conclusions/Significance The results of this work will allow us to progress further in the investigation of fluid motion prediction based on imaging modalities that do not require velocity encoding. This article describes a novel theory of motion estimation based on magnetic resonating blood, which may be directly applied to cardiac flow imaging.Kelvin Kian Loong Wong, Richard Malcolm Kelso, Stephen Grant Worthley, Prashanthan Sanders, Jagannath Mazumdar, Derek Abbot

    Impact of Protein Stability, Cellular Localization, and Abundance on Proteomic Detection of Tumor-Derived Proteins in Plasma

    Get PDF
    Tumor-derived, circulating proteins are potentially useful as biomarkers for detection of cancer, for monitoring of disease progression, regression and recurrence, and for assessment of therapeutic response. Here we interrogated how a protein's stability, cellular localization, and abundance affect its observability in blood by mass-spectrometry-based proteomics techniques. We performed proteomic profiling on tumors and plasma from two different xenograft mouse models. A statistical analysis of this data revealed protein properties indicative of the detection level in plasma. Though 20% of the proteins identified in plasma were tumor-derived, only 5% of the proteins observed in the tumor tissue were found in plasma. Both intracellular and extracellular tumor proteins were observed in plasma; however, after normalizing for tumor abundance, extracellular proteins were seven times more likely to be detected. Although proteins that were more abundant in the tumor were also more likely to be observed in plasma, the relationship was nonlinear: Doubling the spectral count increased detection rate by only 50%. Many secreted proteins, even those with relatively low spectral count, were observed in plasma, but few low abundance intracellular proteins were observed. Proteins predicted to be stable by dipeptide composition were significantly more likely to be identified in plasma than less stable proteins. The number of tryptic peptides in a protein was not significantly related to the chance of a protein being observed in plasma. Quantitative comparison of large versus small tumors revealed that the abundance of proteins in plasma as measured by spectral count was associated with the tumor size, but the relationship was not one-to-one; a 3-fold decrease in tumor size resulted in a 16-fold decrease in protein abundance in plasma. This study provides quantitative support for a tumor-derived marker prioritization strategy that favors secreted and stable proteins over all but the most abundant intracellular proteins

    Radiation Induces Acute Alterations in Neuronal Function

    Get PDF
    Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study

    Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells

    Get PDF
    The Transforming Growth Factor (TGF) β signalling family includes morphogens, such as Nodal and Activin, with important functions in vertebrate development. The concentration of the morphogen is critical for fate decisions in the responding cells. Smad2 and Smad3 are effectors of the Nodal/Activin branch of TGFβ signalling: they are activated by receptors, enter the nucleus and directly transcribe target genes. However, there have been no studies correlating levels of Smad2/3 activation with expression patterns of endogenous target genes in a developmental context over time. We used mouse Embryonic Stem (ES) cells to create a system whereby levels of activated Smad2/3 can be manipulated by an inducible constitutively active receptor (Alk4*) and an inhibitor (SB-431542) that blocks specifically Smad2/3 activation. The transcriptional responses were analysed by microarrays at different time points during activation and repression. We identified several genes that follow faithfully and reproducibly the Smad2/3 activation profile. Twenty-seven of these were novel and expressed in the early embryo downstream of Smad2/3 signalling. As they responded to Smad2/3 activation in the absence of protein synthesis, they were considered direct. These immediate responsive genes included negative intracellular feedback factors, like SnoN and I-Smad7, which inhibit the transcriptional activity of Smad2/3. However, their activation did not lead to subsequent repression of target genes over time, suggesting that this type of feedback is inefficient in ES cells or it is counteracted by mechanisms such as ubiquitin-mediated degradation by Arkadia. Here we present an ES cell system along with a database containing the expression profile of thousands of genes downstream of Smad2/3 activation patterns, in the presence or absence of protein synthesis. Furthermore, we identify primary target genes that follow proportionately and with high sensitivity changes in Smad2/3 levels over 15–30 hours. The above system and resource provide tools to study morphogen function in development

    Optimal spare parts management for vessel maintenance scheduling

    Get PDF
    Condition-based monitoring is used as part of predictive maintenance to collect real-time information on the healthy status of a vessel engine, which allows for a more accurate estimation of the remaining life of an engine or its parts, as well as providing a warning for a potential failure of an engine part. An engine failure results in delays and down-times in the voyage of a vessel, which translates into additional cost and penalties. This paper studies a spare part management problem for maintenance scheduling of a vessel operating on a given route that is defined by a sequence of port visits. When a warning on part failure is received, the problem decides when and to which port each part should be ordered, where the latter is also the location at which the maintenance operation would be performed. The paper describes a mathematical programming model of the problem, as well as a shortest path dynamic programming formulation for a single part which solves the problem in polynomial time complexity. Simulation results are presented in which the models are tested under different scenarios

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    A computational framework for complex disease stratification from multiple large-scale datasets.

    Get PDF
    BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine

    Identification of time-varying source term in time-fractional diffusion equations

    No full text
    International audienceThis paper is concerned with the inverse problem of determining the time and space dependent source term of diffusion equations with constant-order time-fractional derivative in (0, 2). We examine two different cases. In the first one, the source is the product of two spatial and temporal terms, and we prove that both of them can be retrieved by knowledge of one arbitrary internal measurement of the solution for all times. In the second case, we assume that the first term of the product varies with one fixed space variable, while the second one is a function of all the remaining space variables and the time variable, and we show that both terms are uniquely determined by two arbitrary lateral measurements of the solution over the entire time span. These two source identification results boil down to a weak unique continuation principle in the first case and a unique continuation principle for Cauchy data in the second one, that are preliminarily established. Finally, numerical reconstruction of spatial term of source terms in the form of the product of two spatial and temporal terms, is carried out through an iterative algorithm based on the Tikhonov regularization method
    corecore