285 research outputs found

    Modelling the spring ozone maximum and the interhemispheric asymmetry in the remote marine boundary layer 1. Comparison with surface and ozonesonde measurements

    Full text link
    Here we report a modelling study of the spring ozone maximum and its interhemispheric asymmetry in the remote marine boundary layer (MBL). The modelled results are examined at the surface and on a series of time-height cross sections at several locations spread over the Atlantic, the Indian, and the Pacific Oceans. Comparison of model with surface measurements at remote MBL stations indicate a close agreement. The most striking feature of the hemispheric spring ozone maximum in the MBL can be most easily identified at the NH sites of Westman Island, Bermuda, and Mauna Loa, and at the SH site of Samoa. Modelled ozone vertical distributions in the troposphere are compared with ozone profiles. For the Atlantic and the Indian sites, the model generally produces a hemispheric spring ozone maximum close to those of the measurements. The model also produces a spring ozone maximum in the northeastern and tropical north Pacific close to those measurements, and at sites in the NH high latitudes. The good agreement between model and measurements indicate that the model can reproduce the proposed mechanisms responsible for producing the spring ozone maximum in these regions of the MBL, lending confidence in the use of the model to investigate MBL ozone chemistry (see part 2 and part 3). The spring ozone maximum in the tropical central south Pacific and eastern equatorial Pacific are less well reproduced by the model, indicating that both the transport of O3O_3 precursors from biomass burning emissions taking place in southeastern Asia, Australia, Oceania, southern Africa, and South America are not well represented in the model in these regions. Overall, the model produces a better simulation at sites where the stratosphere and biomass burning emissions are the major contributors.Comment: 24 pages, 8 figure

    Ocean warming and long-term change in pelagic bird abundance within the California current system

    Get PDF
    As a result of repeated sampling of pelagic bird abundance over 3 x 105 km2 of open ocean 4 times a year for 8 yr, we report that seabird abundance within the California Current system has declined by 40% over the period 1987 to 1994. This decline has accompanied a concurrent, long-term increase in sea surface temperature. The decline in overall bird abundance is largely, but not entirely, a consequence of the 90% decline of sooty shearwaters Puffinus griseus, the numerically dominant species of the California Current. Seabirds of the offshore waters we sampled showed a different pattern from seabirds of the shelf and slope waters. Leach's storm-petrels Oceanodroma leucorhoa, the commonest species offshore, significantly increased during 1987 to 1994, while sooty shearwaters and other inshore species declined. Thus the clearest pattern that emerges from our data is one of gradual but persistent changes in abundance that transpire at time scales longer than 1 yr. Nevertheless, we did find evidence of change at shorter time scales (weeks and months) that may relate to the El Niño episode of 1992 to 1993: Pronounced positive anomalies of abundance of brown pelicans Pelecanus occidentalis and Heerman's gulls Larus heermani in fall 1991, and black Oceanodroma melania andleast O. microsoma storm-petrels in late summer 1992, likely reflect northward dispersal following reproductive failure in the Gulf of California

    Rapid Bacterial Testing for Spacecraft Water

    Get PDF
    Evaluations of the fluorogenic stains and probes will continue. E. coli 0157:H7 will be used as the reference strain for optimizing protocols. We anticipate the continued use of the fluorescent antibodies (TRITC and FITC labeled) in conjunction with CTC, Rhl23, DiBAC4(3), DAPI and acridine orange. Chemunex, the manufacturer of the ChemScan analyzer system, also makes a fluorogenic probe, Chemchrome B, which will be incorporated into the suite of probes to evaluate once their system is on site. Regardless of the combination of stains and probes all will be evaluated on membrane filters. Development of a FISH protocol that will be applicable to our conditions will be continued. Complimentary 16s rRNA probes to Ps. aeruginosa and currently in our laboratory will be evaluated first. Once this protocol has been adequately optimized other probes will be ordered for u a select number of other species. Currently, protocols to evaluate the effects of disinfection and the resulting lethality, injury on stain and/or probe specificity and reliability are being developed. E. coli 0157:H7 is the reference strain and chlorine the disinfectant the reference protocol is being developed around. Upon completion of this work, the resulting protocol will be extended to other species and disinfectants (e.g., iodine). Similar disinfectant experiments will then be conducted on the same species after starvation to evaluate the effects of starvation on disinfection resistance and the applicability of the stains and probes. Development of the immunomagnetic separation system will continue. Combined with the rapid methods described above, with enumeration by the ChemScan, we anticipate that this will provide a highly sensitive technique for the detection of specific, active bacteria

    Predicted rocket and shuttle effects on stratospheric ozone

    Get PDF
    The major chemical effluents of either solid- or liquid-fueled rockets that can potentially perturb stratospheric ozone include chlorine compounds (HCl), nitrogen compounds (NO(x)), and hydrogen compounds (H2 and H2O). Radicals (Cl, ClO, H, OH, HO2, NO, and NO2) formed directly or indirectly from rocket exhaust can cause the catalytic destruction of ozone. Other exhaust compounds that could presumably lead to ozone destruction either by direct reaction with ozone or by providing a surface for heterogeneous processes include the particulates Al2O3, ice, and soot. These topics are discussed in terms of the possible effects of rocket exhausts on stratospheric ozone

    Ozone depletion and chlorine loading potentials

    Get PDF
    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere

    Global modelling of the total OH reactivity: investigations on the “missing” OH sink and its atmospheric implications

    Get PDF
    The hydroxyl radical (OH) plays a crucial role in the chemistry of the atmosphere as it initiates the removal of most trace gases. A number of field campaigns have observed the presence of a “missing” OH sink in a variety of regions across the planet. A comparison of direct measurements of the OH loss frequency, also known as total OH reactivity (kOH), with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides) indicates that, in some cases, up to 80 % of kOH is unaccounted for. In this work, the UM-UKCA chemistry-climate model was used to investigate the wider implications of the missing reactivity on the oxidising capacity of the atmosphere. Simulations of the present-day atmosphere were performed and the model was evaluated against an array of field measurements to verify that the known OH sinks were reproduced well, with a resulting good agreement found for most species. Following this, an additional sink was introduced to simulate the missing OH reactivity as an emission of a hypothetical molecule, X, which undergoes rapid reaction with OH. The magnitude and spatial distribution of this sink were underpinned by observations of the missing reactivity. Model runs showed that the missing reactivity accounted for on average 6 % of the total OH loss flux at the surface and up to 50 % in regions where emissions of the additional sink were high. The lifetime of the hydroxyl radical was reduced by 3 % in the boundary layer, whilst tropospheric methane lifetime increased by 2 % when the additional OH sink was included. As no OH recycling was introduced following the initial oxidation of X, these results can be interpreted as an upper limit of the effects of the missing reactivity on the oxidising capacity of the troposphere. The UM-UKCA simulations also allowed us to establish the atmospheric implications of the newly characterised reactions of peroxy radicals (RO2) with OH. Whilst the effects of this chemistry on kOH were minor, the reaction of the simplest peroxy radical, CH3O2, with OH was found to be a major sink for CH3O2 and source of HO2 over remote regions at the surface and in the free troposphere. Inclusion of this reaction in the model increased tropospheric methane lifetime by up to 3 %, depending on its product branching. Simulations based on the latest kinetic and product information showed that this reaction cannot reconcile models with observations of atmospheric methanol, in contrast to recent suggestions

    The increasing threat to stratospheric ozone from dichloromethane.

    Get PDF
    It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer

    Ballistic Atom Pumps

    Get PDF
    We examine a classically chaotic system consisting of two reservoirs of particles connected by a channel containing oscillating potential-energy barriers. We investigate whether such a system can preferentially pump particles from one reservoir to the other, a process often called “quantum pumping.” We show how to make a “particle diode” which under specified conditions permits net particle pumping in only one direction. Then we examine systems having symmetric barriers. We find that if all initial particle energies are considered, a system with symmetric barriers cannot preferentially pump particles. However, if only finite initial energy bands are considered, the system can create net particle transport in either direction. We study the system classically, semiclassically, and quantum mechanically, and find that the quantum description cannot be fully understood without the insight gained from classical and semiclassical analysis

    Scattering By an Oscillating Barrier: Quantum, Classical, and Semiclassical Comparison

    Get PDF
    We present a detailed study of scattering by an amplitude-modulated potential barrier using three distinct physical frameworks: quantum, classical, and semiclassical. Classical physics gives bounds on the energy and momentum of the scattered particle, while also providing the foundation for semiclassical theory. We use the semiclassical approach to selectively add quantum-mechanical effects such as interference and diffraction. We find good agreement between the quantum and semiclassical momentum distributions. Our methods and results can be used to understand quantum and classical aspects of transport mechanisms involving time-varying potentials, such as quantum pumping
    corecore