6 research outputs found

    Combining Bayesian methods and aircraft observations to constrain the HO. + NO2 reaction rate

    Get PDF
    Tropospheric ozone is the third strongest greenhouse gas, and has the highest uncertainty in radiative forcing of the top five greenhouse gases. Throughout the troposphere, ozone is produced by radical oxidation of nitrogen oxides (NOx = NO + NO2). In the upper troposphere (8–10 km), current chemical transport models under-estimate nitrogen dioxide (NO2) observations. Improvements to simulated NOx production from lightning have increased NO2 predictions, but the predictions in the upper troposphere remain biased low. The upper troposphere has low temperatures (T < 250 K) that increase the uncertainty of many important chemical reaction rates. This study constrains uncertain reaction rates by combining model predictions with measurements from the Intercontinental Chemical Transport Experiment-North America observational campaign. The results show that the nitric acid formation rate, which is the dominant sink of NO2 and radicals, is currently over-estimated by 22% in the upper troposphere. The results from this study suggest that the temperature sensitivity of nitric acid formation is lower than currently recommended. Since the formation of nitric acid removes nitrogen dioxide and radicals that drive the production of ozone, the revised reaction rate will affect ozone concentrations in upper troposphere impacting climate and air quality in the lower troposphere

    Improving the particle dry deposition scheme in the CMAQ photochemical modeling system

    No full text
    Dry deposition of atmospheric aerosols in large-scale models is a critical, but highly uncertain, sink process with a strong dependence on particle size, meteorological conditions, and land surface properties. This study investigates the particle dry deposition scheme implemented in the standard Community Multiscale Air Quality (CMAQ) model v5.2.1, characterizes its underlying parameterized components with comparison to a similar scheme in a contemporary regional-scale model, and proposes two updated schemes that are then evaluated with available ambient particle deposition velocity (Vd) measurements. Both updated schemes reduce the surprisingly strong dependence of deposition velocity on the aerosol mode width, with one scheme further introducing a dependence on vegetation coverage that is broadly consistent with variability in observations between vegetated and non-vegetated surfaces. Compared to the base scheme, the updated scheme with vegetation dependence increases Vd for submicron particles and decreases it for larger particles by an average of 37% and −66%, respectively. This scheme performs statistically better than the base scheme, reducing fractional biases by 56%–97% for vegetated land-use types and has roughly equivalent performance over water. The base and updated schemes are tested with three annual CMAQ (v5.2.1) simulations for the year 2011; predicted ambient aerosol concentrations are evaluated with routine monitoring network observations and predicted dry deposition fluxes are evaluated with data from the Clean Air Status and Trends Network (CASTNET). The updated scheme with vegetation dependence reduces negative fractional biases for PM10 by 41% and positive fractional biases for PM2.5 organic carbon by 15%. This scheme has been incorporated into the most recent publicly accessible versions of CMAQ (v5.3 and beyond) to replace the scheme used in previous versions of CMAQ (v4.5 through v5.2.1)

    Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US

    No full text
    Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2× sulfate, RN=2S ≈0.8 to 0.9) with approximately 70% of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in μgm-3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid-liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic-organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH=1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C≥0.6) compounds including several isoprene-derived tracers as well as levoglu-cosan but decrease particle-phase partitioning for low O: C, monoterpene-derived species

    Impact of dimethylsulfide chemistry on air quality over the Northern Hemisphere

    No full text
    10 pags., 8 figs., 1 tab.We implement oceanic dimethylsulfide (DMS) emissions and its atmospheric chemical reactions into the Community Multiscale Air Quality (CMAQv53) model and perform annual simulations without and with DMS chemistry to quantify its impact on tropospheric composition and air quality over the Northern Hemisphere. DMS chemistry enhances both sulfur dioxide (SO) and sulfate (SO) over seawater and coastal areas. It enhances annual mean surface SO concentration by +46 pptv and SOby +0.33 μg/m and decreases aerosol nitrate concentration by −0.07 μg/m over seawater compared to the simulation without DMS chemistry. The changes decrease with altitude and are limited to the lower atmosphere. Impacts of DMS chemistry on SO are largest in the summer and lowest in the fall due to the seasonality of DMS emissions, atmospheric photochemistry and resultant oxidant levels. Hydroxyl and nitrate radical-initiated pathways oxidize 75% of the DMS while halogen-initiated pathways oxidize 25%. DMS chemistry leads to more acidic particles over seawater by decreasing aerosol pH. Increased SOfrom DMS enhances atmospheric extinction while lower aerosol nitrate reduces the extinction so that the net effect of DMS chemistry on visibility tends to remain unchanged over most of the seawater.Junri Zhao and Yan Zhang are thankful to the foundation of the National Key Research and Development Program of China (2016YFA060130X

    Nitrate radicals and biogenic volatile organic compounds:Oxidation, mechanisms, and organic aerosol

    Get PDF
    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-The-Art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models
    corecore