8 research outputs found

    Ultrasound-Triggerable Coatings for Foley Catheter Balloons for Local Release of Anti-Inflammatory Drugs during Bladder Neck Dilation

    No full text
    Bladder neck contracture (BNC) is a complication of the surgical treatment of benign and malignant prostate conditions and is associated with the partial or complete blockage of urination. Correction of this condition usually requires repeated surgical intervention, which does not guarantee recovery. Balloon dilation is a minimally invasive alternative to the surgical dissection of tissues; however, it significantly reduces the patient’s quality of life. Additional local anti-inflammatory treatment may reduce the number of procedures requested and increase the attractiveness of this therapeutic strategy. Here, we report about an ultrathin biocompatible coating based on polylactic acid for Foley catheter balloons that can provide localized release of Prednol-L in the range of 56–99 µg in the BNC zone under conventional diagnostic ultrasound exposure. Note that the exposure of a transrectal probe with a conventional gray-scale ultrasound regimen with and without shear wave elastography (SWE) was comparably effective for Prednol-L release from the coating surface of a Foley catheter balloon. This strategy does not require additional manipulations by clinicians. The trigger for the drug release is the ultrasound exposure, which is applied for visualization of the balloon’s location during the dilation process. In vivo experiments demonstrated the absence of negative effects of the usage of a coated Foley catheter for balloon dilation of the bladder neck and urethra

    Amylase-Sensitive Polymeric Nanoparticles Based on Dextran Sulfate and Doxorubicin with Anticoagulant Activity

    No full text
    This study looked into the synthesis and study of Dextrane Sulfate−Doxorubicin Nanoparticles (DS−Dox NP) that are sensitive to amylase and show anticoagulant properties. The particles were obtained by the method of solvent replacement. They had a size of 305 ± 58 nm, with a mass ratio of DS:Dox = 3.3:1. On heating to 37 °C, the release of Dox from the particles was equal to 24.2% of the drug contained. In the presence of amylase, this ratio had increased to 42.1%. The study of the biological activity of the particles included an assessment of the cytotoxicity and the effect on hemostasis and antitumor activity. In a study of cytotoxicity on the L929 cell culture, it was found that the synthesized particles had less toxicity, compared to free doxorubicin. However, in the presence of amylase, their cytotoxicity was higher than the traditional forms of the drug. In a study of the effect of DS−Dox NP on hemostasis, it was found that the particles had a heparin-like anticoagulant effect. Antitumor activity was studied on the model of ascitic Zaidel hepatoma in rats. The frequency of complete cure in animals treated with the DS−Dox nanoparticles was higher, compared to animals receiving the traditional form of the drug

    Targeted Therapy for Glomerulonephritis Using Arterial Delivery of Encapsulated Etanercept

    No full text
    Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 μg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology

    Polyelectrolyte Microcapsules as a Tool to Enhance Photosensitizing Effect of Chlorin E6

    No full text
    Introduction: Photodynamic therapy is a promising method of tumors treatment using photosensitizers and light of a certain wavelength. PS modification improves and enhances the phototoxic effect with decreased dark cytotoxicity. Materials and Methods: We compared the photosensitizing effect of polyelectrolyte microcapsules with chlorin E6 (ClE6) and free ClE6 at equivalent concentrations on murine fibroblast culture L929 using in vitro tests. Microcapsules were prepared layer by layer, sequentially depositing oppositely charged polyelectrolytes onto spherical CaCO3 particles. Cellular uptake of capsules was assessed using confocal microscopy. MTT test was used for a study of cell viability, and the relative amount of ROS was determined by the fluorescent method. Results: Microcapsules with ClE6 (in all tested concentrations) after exposure to red light (660 nm) reduced cell viability from 20% to 5%, while these capsules did not have dark cytotoxicity. Free ClE6 at the same concentrations as in the capsules after irradiation reduced viability from 65% to 35%. The level of ROS in the group of cells with capsules was 2 times higher compared to the group with CLE6. Discussion: The most probable mechanism of toxicity increase is creation of a higher ROS concentration and effect localization in the area of microcapsule interaction with the cell membrane. ROS production activation may stem from capsules providing a higher local PS concentration in the cell or nearby than the drug’s free form. Conclusion: The inclusion of chlorin E6 in polymer capsules reduced dark toxicity and increased the photosensitizing effect compared to the free form of ClE6
    corecore