9 research outputs found

    Controlled epitaxial graphene growth within amorphous carbon corrals

    Full text link
    Structured growth of high quality graphene is necessary for technological development of carbon based electronics. Specifically, control of the bunching and placement of surface steps under epitaxial graphene on SiC is an important consideration for graphene device production. We demonstrate lithographically patterned evaporated amorphous carbon corrals as a method to pin SiC surface steps. Evaporated amorphous carbon is an ideal step-flow barrier on SiC due to its chemical compatibility with graphene growth and its structural stability at high temperatures, as well as its patternability. The amorphous carbon is deposited in vacuum on SiC prior to graphene growth. In the graphene furnace at temperatures above 1200^\circC, mobile SiC steps accumulate at these amorphous carbon barriers, forming an aligned step free region for graphene growth at temperatures above 1330^\circC. AFM imaging and Raman spectroscopy support the formation of quality step-free graphene sheets grown on SiC with the step morphology aligned to the carbon grid

    Single-crystal nanopyramidal BGaN by nanoselective area growth on AlN/Si(111) and GaN templates

    No full text
    International audienceWe report nano-selective area growth (NSAG) of BGaN by MOCVD on AlN/Si(111) and GaN templates resulting in 150 nm single crystalline nanopyramids. This is in contrast to unmasked or micro-selective area growth, which results in a multi-crystalline structure on both substrates. Various characterization techniques were used to evaluate NSAG as a viable technique to improve BGaN material quality on AlN/Si(111) using results of GaN NSAG and unmasked BGaN growth for comparison. Evaluation of BGaN nanopyramid quality, shape and size uniformity revealed that the growth mechanism is the same on both the templates. Further STEM analysis of BGaN nanopyramids on AlN/Si (111) templates confirmed that these are single-crystalline structures without any dislocations, likely due to single nucleation occurring in the 80 nm mask opening. CL results correspond to boron content between 1.7% and 2.0% in the nanopyramids. We conclude that NSAG is promising for growth of high-quality BGaN nanostructures and complex nano-heterostructures, especially for low-cost silicon substrates

    Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template

    No full text
    International audienceUniform, dense, single-phase, 150 nm thick indium gallium nitride (InGaN) nanostructure (nanorods and nanostripes) arrays have been obtained on gallium nitride templates, by metal organic chemical vapor deposition and nanoscale selective area growth on silicon dioxide patterned masks. The 150 nm thick InGaN nanorods have a perfect hexagonal pyramid shape with relatively homogenous indium concentration up to 22%, which is almost twice as high as in planar InGaN grown in the same condition, and luminesce at 535 nm. InGaN nanostripes feature c-axis oriented InGaN in the core which is covered by InGaN grown along semi-polar facets with higher In content. Transmission electron microscope and sub micron beam X-rays diffraction investigations confirm that both InGaN nanostructures are mostly defect free and monocrystalline. The ability to grow defect-free thick InGaN nanostructures with reduced polarization and high indium incorporation offers a solution to develop high efficiency InGaN-based solar cells

    Oligomeric Acylphloroglucinols from Myrtle (Myrtus communis)

    No full text
    The dimeric nonprenylated acylphloroglucinol semimyrtucommulone (6) was obtained from the leaves of myrtle (Myrtus communis) as a 2:1 mixture of two rotamers. The known trimeric phloroglucinol myrtucommulone A (1) was also isolated and characterized spectroscopically as a silylated cyclized derivative (5). Myrtucommulone A showed significant antibacterial activity against multidrug-resistant (MDR) clinically relevant bacteria, while semimyrtucommulone was less active

    Cytotoxic Phloroglucinols from the Leaves of Myrtus communis

    No full text
    Bioactivity-guided fractionation of a dichloromethane extract of the leaves of Myrtus communis led to the isolation of phloroglucinol derivatives. The structures of the new myrtucommulones J, K, and L (1-3) and the previously known myrtucommulone A (4) were elucidated on the basis of extensive 1D and 2D NMR experiments as well as high-resolutionmass spectrometry. Myrtucommulone J was obtained as a tautomeric pair (1/1a). The compounds were tested in vitro for their cytotoxic and antibacterial activities
    corecore