97 research outputs found

    Partially incorrect fossil data augment analyses of discrete trait evolution in living species

    Get PDF
    Ancestral state reconstruction of discrete character traits is often vital when attempting to understand the origins and homology of traits in living species. The addition of fossils has been shown to alter our understanding of trait evolution in extant taxa, but researchers may avoid using fossils alongside extant species if only few are known, or if the designation of the trait of interest is uncertain. Here, I investigate the impacts of fossils and incorrectly coded fossils in the ancestral state reconstruction of discrete morphological characters under a likelihood model. Under simulated phylogenies and data, likelihood-based models are generally accurate when estimating ancestral node values. Analyses with combined fossil and extant data always outperform analyses with extant species alone, even when around one quarter of the fossil information is incorrect. These results are especially pronounced when model assumptions are violated, such as when there is a trend away from the root value. Fossil data are of particular importance when attempting to estimate the root node character state. Attempts should be made to include fossils in analysis of discrete traits under likelihood, even if there is uncertainty in the fossil trait data

    Size isn’t everything:rates of genome size evolution, not C value, correlate with speciation in angiosperms

    Get PDF
    Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity

    MOTMOT:Models of trait macroevolution on trees (an update)

    Get PDF
    The disparity in species’ traits arises through variation in the tempo and mode of evolution over time and between lineages. Understanding these patterns is a core goal in evolutionary biology. Here we present the comprehensively updated r package MOTMOT: Models Of Trait Macroevolution On Trees that contains methods to fit and test models of continuous trait evolution on phylogenies of extant and extinct species. MOTMOT provides functions to investigate a range of evolutionary hypotheses, including flexible approaches to investigate heterogeneous rates and modes of evolution, models of trait change under interspecific competition and patterns of trait change across significant evolutionary transitions such as mass extinctions. We introduce and test novel algorithms of heterogeneous tempo and mode of evolution that allow for phylogeny-wide shifts in evolution at specific times on a tree. We use these new MOTMOT functions to highlight an exceptionally high rate of mammalian body mass evolution for 10 million years following the Cretaceous–Palaeogene mass extinction. These methods provide biologists and palaeontologists with the tools to analyse continuous trait data on phylogenies, including large trees of up to thousands of species.</p

    Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data

    Get PDF
    Different analytical methods can yield competing interpretations of evolutionary history and, currently, there is no definitive method for phylogenetic reconstruction using morphological data. Parsimony has been the primary method for analysing morphological data, but there has been a resurgence of interest in the likelihood-based Mk-model. Here, we test the performance of the Bayesian implementation of the Mk-model relative to both equal and implied-weight implementations of parsimony. Using simulated morphological data, we demonstrate that the Mk-model outperforms equal-weights parsimony in terms of topological accuracy, and implied-weights performs the most poorly. However, the Mk-model produces phylogenies that have less resolution than parsimony methods. This difference in the accuracy and precision of parsimony and Bayesian approaches to topology estimation needs to be considered when selecting a method for phylogeny reconstruction

    Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin

    Get PDF
    Establishing a unified timescale for the early evolution of Earth and life is challenging and mired in controversy because of the paucity of fossil evidence, the difficulty of interpreting it and dispute over the deepest branching relationships in the tree of life. Surprisingly, it remains perhaps the only episode in the history of life where literal interpretations of the fossil record hold sway, revised with every new discovery and reinterpretation. We derive a timescale of life, combining a reappraisal of the fossil material with new molecular clock analyses. We find the last universal common ancestor of cellular life to have predated the end of late heavy bombardment (&gt;3.9 billion years ago (Ga)). The crown clades of the two primary divisions of life, Eubacteria and Archaebacteria, emerged much later (&lt;3.4 Ga), relegating the oldest fossil evidence for life to their stem lineages. The Great Oxidation Event significantly predates the origin of modern Cyanobacteria, indicating that oxygenic photosynthesis evolved within the cyanobacterial stem lineage. Modern eukaryotes do not constitute a primary lineage of life and emerged late in Earth’s history (&lt;1.84 Ga), falsifying the hypothesis that the Great Oxidation Event facilitated their radiation. The symbiotic origin of mitochondria at 2.053–1.21 Ga reflects a late origin of the total-group Alphaproteobacteria to which the free living ancestor of mitochondria belonged.</p
    • …
    corecore