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FOSS I L S provide our only direct insight into the history

of life and realizing their evolutionary significance invari-

ably requires that they are integrated into a phylogeny

with their living and/or fossil relatives. There are many

competing approaches to phylogeny estimation and,

episodically, debate over their relative efficacy has

erupted into controversy, as exemplified by the introduc-

tion of cladistics into palaeontology (Hull 1988). While

there have been skirmishes on the role of stratigraphy in

phylogeny estimation (Fox et al. 1999; Smith 2000; Fisher

et al. 2002; Wagner 2002) parsimony has since achieved

hegemony despite the introduction and implementation

of a model-based approach to the analysis of morpholog-

ical data (Lewis 2001). Increasingly, over the last few

years, palaeontologists have performed parallel phylo-

genetic analyses using parsimony and model-based

approaches, perhaps in a bid to integrate over the uncer-

tainty over which method provides the most credible

estimate of inter-specific relationships. Certainly, without

knowledge of the true phylogeny it is not possible to rec-

oncile the conflicting results from competing methods.

Hence, Wright & Hillis (2014) took a simulation

approach, generating thousands of morphology-like data-

sets on a known tree and then assessing the relative per-

formance of parsimony and the Bayesian implementation

of the Mk model in recovering the generating tree from

the simulated data. They found that the model-based

method performed best. Schooled in parsimony, we were

surprised by the findings of Wright & Hillis (2014) and

believed that there were aspects of their experimental

design that potentially biased their analyses in favour of

the probabilistic model; not least that their data were

effectively generated using the Mk model. Also, we

wanted to assess the performance of alternative

parsimony methods, and benchmark their performance

with simulated data against empirical matrices. However,

even when accounting for these factors, we recovered the

same result as Wright & Hillis (2014): the Bayesian

implementation of the Mk model outperformed parsi-

mony (O’Reilly et al. 2016). Both ourselves and others

have since attempted to explore other variables influenc-

ing the estimation of phylogenetic relationships, such as

tree symmetry and character design (Puttick et al.

2017a), as well as measures of clade support (Brown

et al. 2017; O’Reilly et al. 2017). There are many other

variables that have yet to be investigated, including char-

acter covariation, the accuracy of branch length esti-

mates, and the impact of non-contemporaneous taxa.

However, based on existing simulation approaches and

the variables considered to date, the Bayesian implemen-

tation of the Mk model continues to perform with great-

est accuracy, particularly when datasets are small and

levels of homoplasy are high (O’Reilly et al. 2017).

Is parsimony dead? Goloboff et al. (2018) certainly do

not think so, calling into question all of our results based

principally on the argument that the model of evolution

that we used to simulate morphology-like data, is not

biologically realistic. We cannot address every point they

make, not least since their critique is focused explicitly on

what we did not write, rather than what we did write.

However, Goloboff et al. (2017, 2018) object particularly

to the assumption in our simulating framework of the

proportionality of branch lengths among characters,

which is clearly an unrealistic expectation of morphologi-

cal evolution. In this we are agreed; if there were an

entirely realistic model of morphological evolution avail-

able we would have used it. However, if such a model

were available, we could dispense with both parsimony
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and the Mk model and simply apply this model to derive

the true relationships among taxa.

Empirical realism of simulated data

The critique of Goloboff et al. (2018), focused on the bio-

logical realism of the model of evolution that we used to

simulate morphology-like data, is based on a revisionist

perspective. All of our original model choices were

informed by the pioneering study of Wright & Hillis

(2014); we employed an identical methodology to these

authors, where possible, to allow for a direct comparison:

we used the same generating tree (Pyron 2011); we used

the same number of characters for simulation (350 and

1000 sites; we added 100 character datasets as they are

representative of the size of many palaeontological stud-

ies); and we used a similar character simulation model

but with modifications to violate the Mk model. We used

the HKY+G model of molecular evolution on known

trees to create datasets that violate assumptions underly-

ing the Mk model. The HKY model generates data with

an uneven stationary distribution of state frequencies in

our simulations, violating one of the primary assumptions

of the Mk model. These nucleotide datasets were con-

verted to binary or multistate morphology-like datasets

by reducing the four nucleotide states to purines and

pyrimidines (R/Y coding) and recoding them as binary

states, or by directly mapping the four nucleotides to

integers for multistate characters. We also achieved fur-

ther model misspecification by drawing a unique rate for

each character from a continuous gamma distribution;

the Mk model assumes all characters have an equal

expected number of changes on individual branches, and

the Mk+G model assumes there are n unique rates, where

n is the number of discrete gamma categories. To ensure

that these simulated datasets were also empirically realis-

tic, we evaluated their overall consistency index (CI),

excluding datasets that fell outside the range of CI in a

published survey of empirical datasets (Sanderson &

Donoghue 1989, 1996). In O’Reilly et al. (2016), we

explored the impact of CI filtering on our results, and in

subsequent papers the use of CI filtering became part of

the simulation procedure (O’Reilly et al. 2017; Puttick

et al. 2017a).

As we stated explicitly in our study, we attempted to

obtain two qualities in our simulated data: (1) that the

generating model violated the Mk model; and (2) that it

achieved our prescribed measure of empirical realism.

Our analyses using the Mk model frequently failed to

recover the generating tree with precision or accuracy,

demonstrating effectively that the simulated datasets are

not compatible with this evolutionary model and achieve

a suitable level of model misspecification. Goloboff et al.

(2017) have already corroborated the empirical realism of

the simulated datasets. Thus, Goloboff et al. (2017, 2018)

effectively conflate the need for empirical realism in the

model used to generate the data with the efficacy of the

methods in analysing the data.

Alternative simulation approaches

To simulate data, Goloboff et al. (2018) prefer their own

model, in which the rate of change for each character is

completely independent on every branch of the tree.

Their implicit (Goloboff et al. 2017) and then later expli-

cit (Goloboff et al. 2018) claim that their model is more

biologically realistic is no better justified than the Mk

model, as neither can be supported with meaningful

quantitative empirical evidence. If Goloboff et al. (2018)

consider a model in which characters share a set of

branch lengths to be biologically unrealistic, they must

also accept that the assumptions of their own model are

at least equally biologically unrealistic, if not potentially

more so. Goloboff et al. (2018) argue that it is not possi-

ble to generalize based on the simulation procedure from

O’Reilly et al. (2017) and Puttick et al. (2017a); if true,

this same argument can be levelled at their own simula-

tion procedure.

The Goloboff et al. (2017) simulation model effectively

represents an almost polar opposite to the HKY+G simu-

lation procedure of O’Reilly et al. (2017) as it allows for

unique rates for each character on each branch, whereas

our simulation approach reduces the number of param-

eters by allowing the expected number of changes on a

branch to be shared among all characters, with some pro-

portional augmentation by factors randomly sampled

from a gamma distribution. Parsimony and maximum

likelihood will achieve identical results if all branches are

allowed a unique rate for each character (Tuffley & Steel

1997). However, this no common mechanism model is

unwieldy as it employs a huge number of parameters that

grows exponentially with dataset size: (2 9 number of

taxa � 3) 9 number of characters (Huelsenbeck et al.

2011; Yang 2014). The simulation procedure of Goloboff

et al. (2017) is comparable to this extremely parameter-

rich model that sits at the extreme of branch-rate inde-

pendence.

In reality, a more suitable model of morphological evo-

lution probably exists somewhere on the continuum of

potential models separating our simulation framework

and that of Goloboff et al. (2017). The idiosyncrasies of

morphological evolution mean that it is daunting to con-

struct a single model of discrete character change applica-

ble to all datasets. We possess little, if any, meaningful

data regarding the manner in which rates of morphologi-

cal evolution vary across characters and along the
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branches of trees. Thus, if we are to assess the perfor-

mance of the relatively na€ıve inference frameworks we

have available to us, it seems logical to focus instead on

the empirical realism of the structure of simulated data

itself and not the biological realism of the process that

generated it. Similarly, identifying a useful model that

separates the simulation procedures of O’Reilly et al.

(2017) and Goloboff et al. (2017) is neither straightfor-

ward nor necessary to assess the efficacy of the available

phylogenetic estimation frameworks.

Simulated and empirical data

Goloboff et al. (2017, 2018) conclude both of their papers

by observing ‘the use of simulated datasets alone cannot

solve that [sic] problem of model adequacy; empirical

tests of whether morphological data fulfill the crucial

assumptions of the model are required as well.’ Neverthe-

less, they emphasize, the benefit of simulation is that it is

possible to derive general patterns from statistically signif-

icant numbers of replicates. We prefer our own approach

to the simulation of a set of morphological matrices

through the filter of character consistency since, in our

view, the approach taken by Goloboff et al. (2017) yielded

datasets with empirically unrealistic distributions of char-

acter consistency which were frequently dominated by

characters with a high CI; datasets that parsimony analy-

sis will naturally perform well on. Implied Weights Parsi-

mony relies upon a measure of character consistency, and

is only likely to reinforce the true tree when homoplasy is

low (Kluge 1997; Congreve & Lamsdell 2016).

Goloboff et al. (2018) question how we evaluated their

simulated datasets since they did not provide any with

their paper (Goloboff et al. 2017); we used the code pro-

vided in the supplementary materials of Goloboff et al.

(2017) to create simulated datasets and, if the simulation

strategy of Goloboff et al. (2017) is effective, our sample

of simulated data should be statistically comparable to

the data they generated and based their study on. We

present the CI profile of characters within datasets simu-

lated using their strategy in Figure 1, comparing the CI

profile of empirical datasets surveyed by Goloboff et al.

(2017; Fig. 1A), to that of 2000 datasets simulated by

their protocol (Fig. 1B) versus that of O’Reilly et al.

(2017) for 1000 replicates of 100 characters simulated on

an asymmetric tree. Datasets simulated following the

approach of Goloboff et al. (2017) always include a sig-

nificant number of characters with a CI = 1.0 even

though they are all comprised of multistate characters.

Similarly, the simulated matrices of Goloboff et al. (2017)

often under-represent characters with CI < 0.5 relative to

the empirical matrices they surveyed. This under repre-

sentation of low CI characters is particularly obvious in

CI bins spanning the range 0.0–0.2, containing the most

inconsistent characters. This distribution of per character

CI effectively reduces the exposure of the different phylo-

genetic estimation methods to increasingly inconsistent

characters. This bears out the point made in O’Reilly

et al. (2017) and it is in this sense that we viewed the

simulation strategy of Goloboff et al. (2017) to be biased

in favour of parsimony.

Goloboff et al. (2017, 2018) ignore the empirical analy-

ses we conducted (O’Reilly et al. 2016, 2017; Puttick et al.

2017a) even though model comparison using empirical

data is the approach advocated by Goloboff et al. (2017,

2018). These analyses show that the predictions based on

our simulation data are extendable to empirical datasets.

Specifically, smaller datasets achieve lower precision with

the Bayesian implementation of the Mk model, and larger

datasets show increasing congruence in the recovered

topological across all inference methods. We would not

expect these predictions to be true if our simulation-

based analyses were inherently invalid.

Model efficacy vs adequacy

Goloboff et al. (2017, 2018) conflate the issue of method

efficacy and model adequacy. Our explicit aim was to

evaluate the efficacy of parsimony, and both maximum

likelihood and Bayesian approaches to the estimation of

phylogeny. At no stage did we attempt to evaluate the

adequacy of the Mk model, or its ability to effectively

capture the process of morphological evolution. Similarly,

at no stage did we argue that either the single parameter

Markov model or the manner in which the likelihood of

a topology is calculated across a dataset adequately cap-

ture the process of morphological change. Indeed, it is

widely observed among proponents of statistical phylo-

genetic inference that the Mk model will require further

development if it is to encapsulate the process of mor-

phological change to the maximum afforded by the

Markov model framework (e.g. Wright et al. 2016), and

the potential for improvement in the Mk model can be

viewed as a strength, rather than a weakness.

The future

We and others have made steps towards a simulation-

based assessment of phylogenetic methods (Wright & Hil-

lis 2014; O’Reilly et al. 2016, 2017; Brown et al. 2017;

Goloboff et al. 2017; Puttick et al. 2017a, b) so far con-

sidering the impact of tree symmetry (Puttick et al.

2017a) and clade support (Brown et al. 2017; O’Reilly

et al. 2017). As Goloboff et al. (2017, 2018) observe, there

are other parameters to consider, such as non-
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contemporaneous terminals, the accuracy of branch

length estimates, character coevolution and covariation.

We look forward to their exploration in turn.

In the interim, model-based phylogenetic methods

appear to perform best when parsimony methods

perform most poorly (when datasets are small and exhi-

bit low character consistency) and perform at least as

well as parsimony methods when they perform best

(when datasets are large and exhibit high character con-

sistency).
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F IG . 1 . Comparison of empirical and simulation datasets in terms of the consistency of the component characters. A–B, empirical

datasets compiled by Goloboff et al. (2017). C–D, datasets simulated using the strategy of Goloboff et al. (2017). E–F, datasets simu-

lated using the strategy of O’Reilly et al. (2017). A, C, E, the proportion of characters within each dataset that have a consistency index

of 1.0. B, D, F, the proportion of characters within each dataset within each of ten consistency index bins. Colour online.

634 PALAEONTOLOGY , VOLUME 61



Acknowledgements. We would like to thank remaining members

of the Bristol Palaeobiology Research Group for discussion.

MNP is funded by a 1851 Research Fellowship from the Royal

Commission for the Exhibition of 1851; JEO’R., DP and PCJD

are funded by NERC (NE/P013678/1); PCJD is also funded by

NERC (NE/N002067/1) and BBSRC (BB/N000919/1).

Editor. Andrew Smith

REFERENCES

BROWN, J. W., PARINS-FUKUCHI , C., STULL, G. W.,

VARGAS, O. M. and SMITH, S. A. 2017. Bayesian and

likelihood phylogenetic reconstructions of morphological traits

are not discordant when taking uncertainty into consideration:

a comment on Puttick et al.. Proceedings of the Royal Society

B, 284, 20170986.

CONGREVE, C. R. and LAMSDELL, J. C. 2016. Implied weight-

ing and its utility in palaeontological datasets: a study using

modelled phylogenetic matrices. Palaeontology, 59, 447–462.
FISHER, D. C., FOOTE, M., FOX, D. L. and

LEIGHTON, L. R. 2002. Stratigraphy in phylogeny recon-

struction – comment on Smith (2000). Journal of Paleontology,

76, 585–586.
FOX, D. L., F ISHER, D. L. and LEIGHTON, L. R. 1999.

Reconstructing phylogeny with and without temporal data.

Science, 284, 1816–1819.
GOLOBOFF, P. A., TORRES , A. and ARIAS , J. S. 2017.

Weighted parsimony outperforms other methods of phyloge-

netic inference under models appropriate for morphology.

Cladistics, published online 4 June. https://doi.org/10.1111/cla.

12205.

---2018. Parsimony and model-based phylogenetic

methods for morphological data: a comment on O’Reilly et al.

Palaeontology, published online April. https://doi.org/10.

1111/pala.12353

HUELSENBECK, J. P., ALFARO, M. E. and SUCHARD,

M. A. 2011. Biologically inspired phylogenetic models strongly

outperform the no common mechanism model. Systematic

Biology, 60, 225–232.
HULL, D. 1988. Science as a process: an evolutionary account of

the social and conceptual development of science. University of

Chicago Press, 538 pp.

KLUGE, A. G. 1997. Testability and the refutation and corrob-

oration of cladistic hypotheses. Cladistics, 13, 81–96.
LEWIS , P. O. 2001. A likelihood approach to estimating phy-

logeny from discrete morphological character data. Systematic

Biology, 50, 913–925.
O’REILLY, J. E., PUTTICK, M. N., PARRY, L. A., TAN-

NER, A. R., TARVER, J. E., FLEMING, J., P ISANI , D.

and DONOGHUE, P. C. J. 2016. Bayesian methods outper-

form parsimony but at the expense of precision in the estima-

tion of phylogeny from discrete morphological data. Biology

Letters, 12, 20160081.

--PISANI , D. and DONOGHUE, P. C. J. 2017.

Probabilistic methods surpass parsimony when assessing clade

support in phylogenetic analyses of discrete morphological

data. Palaeontology, 61, 105–118.
PUTTICK, M. N., O’REILLY, J. E., TANNER, A. R.,

FLEMING, J. F., CLARK, J., HOLLOWAY, L.,

LOZANO-FERNANDEZ, J., PARRY, L. A., TARVER,

J. E., P ISANI , D. and DONOGHUE, P. C. J. 2017a.

Uncertain-tree: discriminating among competing approaches

to the phylogenetic analysis of phenotype data. Proceedings of

the Royal Society B, 284, 20162290.

--OAKLEY, D., TANNER, A. R., FLEMING, J. F.,

CLARK, J., HOLLOWAY, L., LOZANO-FERNAN-

DEZ, J., PARRY, L. A., TARVER, J. E., P ISANI , D. and

DONOGHUE, P. C. J. 2017b. Parsimony and maximum-

likelihood phylogenetic analyses of morphology do not gener-

ally integrate uncertainty in inferring evolutionary history: a

response to Brown et al. Proceedings of the Royal Society B,

284, 20171636.

PYRON, R. A. 2011. Divergence time estimation using fossils

as terminal taxa and the origins of Lissamphibia. Systematic

Biology, 60, 466–481.
SANDERSON, M. J. and DONOGHUE, M. J. 1989. Pat-

terns of variation in levels of homoplasy. Evolution, 43, 1781–
1795.

--1996. The relationship between homoplasy and confi-

dence in a phylogenetic tree. 67–89. In SANDERSON, M. J.

and HUFFORD, L. (eds). Homoplasy: the recurrence of simi-

larity in evolution. Academic Press.

SMITH, A. B. 2000. Stratigraphy in phylogeny reconstruction.

Journal of Paleontology, 74, 763–766.
TUFFLEY, C. and STEEL , M. 1997. Links between maximum

likelihood and maximum parsimony under a simple model of

site substitution. Bulletin of Mathematical Biology, 59, 581–
607.

WAGNER, P. J. 2002. Testing phylogenetic hypotheses with

stratigraphy and morphology – a comment on Smith (2000).

Journal of Paleontology, 76, 590–593.
WRIGHT, A. M. and HILLIS , D. M. 2014. Bayesian analysis

using a simple likelihood model outperforms parsimony for

estimation of phylogeny from discrete morphological data.

PLoS One, 9, e109210.

-LLOYD, G. T. and HILLIS , D. M. 2016. Modeling char-

acter change heterogeneity in phylogenetic analyses of morphol-

ogy through the use of priors. Systematic Biology, 65, 602–611.
YANG, Z. 2014. Molecular evolution: a statistical approach.

Oxford University Press, 492 pp.

O ’RE ILLY ET AL . : REPLY TO GOLOBOFF ET AL . 635

https://doi.org/10.1111/cla.12205
https://doi.org/10.1111/cla.12205
https://doi.org/10.1111/pala.12353
https://doi.org/10.1111/pala.12353

