808 research outputs found

    Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = -1

    Get PDF
    We prove that the hyperelliptic Torelli group is generated by Dehn twists about separating curves that are preserved by the hyperelliptic involution. This verifies a conjecture of Hain. The hyperelliptic Torelli group can be identified with the kernel of the Burau representation evaluated at t = −1 and also the fundamental group of the branch locus of the period mapping, and so we obtain analogous generating sets for those. One application is that each component in Torelli space of the locus of hyperelliptic curves becomes simply connected when curves of compact type are added

    The Relationship Between Baryons and Dark Matter in Extended Galaxy Halos

    Full text link
    The relationship between gas-rich galaxies and Ly-alpha absorbers is addressed in this paper in the context of the baryonic content of galaxy halos. Deep Arecibo HI observations are presented of two gas-rich spiral galaxies within 125 kpc projected distance of a Ly-alpha absorber at a similar velocity. The galaxies investigated are close to edge-on and the absorbers lie almost along their major axes, allowing for a comparison of the Ly-alpha absorber velocities with galactic rotation. This comparison is used to examine whether the absorbers are diffuse gas rotating with the galaxies' halos, outflow material from the galaxies, or intergalactic gas in the low redshift cosmic web. The results indicate that if the gas resides in the galaxies' halos it is not rotating with the system and possibly counter-rotating. In addition, simple geometry indicates the gas was not ejected from the galaxies and there are no gas-rich satellites detected down to 3.6 - 7.5 x 10^6 Msun, or remnants of satellites to 5-6 x 10^{18} cm^{-2}. The gas could potentially be infalling from large radii, but the velocities and distances are rather high compared to the high velocity clouds around the Milky Way. The most likely explanation is the galaxies and absorbers are not directly associated, despite the vicinity of the spiral galaxies to the absorbers (58-77 kpc from the HI edge). The spiral galaxies reside in a filament of intergalactic gas, and the gas detected by the absorber has not yet come into equilibrium with the galaxy. These results also indicate that the massive, extended dark matter halos of spiral galaxies do not commonly have an associated diffuse baryonic component at large radii.Comment: Accepted by AJ, 33 pages preprint format, see http://www.astro.lsa.umich.edu/~mputman/putman1.pdf for a higher resolution versio

    Gas Accretion is Dominated by Warm Ionized Gas in Milky Way-Mass Galaxies at z ~ 0

    Full text link
    We perform high-resolution hydrodynamic simulations of a Milky Way-mass galaxy in a fully cosmological setting using the adaptive mesh refinement code, Enzo, and study the kinematics of gas in the simulated galactic halo. We find that the gas inflow occurs mostly along filamentary structures in the halo. The warm-hot (10^5 K 10^6 K) ionized gases are found to dominate the overall mass accretion in the system (with dM/dt = 3-5 M_solar/yr) over a large range of distances, extending from the virial radius to the vicinity of the disk. Most of the inflowing gas (by mass) does not cool, and the small fraction that manages to cool does so primarily close to the galaxy (R <~ 20 kpc), perhaps comprising the neutral gas that may be detectable as, e.g., high-velocity clouds. The neutral clouds are embedded within larger, accreting filamentary flows, and represent only a small fraction of the total mass inflow rate. The inflowing gas has relatively low metallicity (Z/Z_solar < 0.2). The outer layers of the filamentary inflows are heated due to compression as they approach the disk. In addition to the inflow, we find high-velocity, metal-enriched outflows of hot gas driven by supernova feedback. Our results are consistent with observations of halo gas at low z.Comment: 10 pages including 5 figures, submitted to Ap

    Do the Unidentified EGRET Sources Trace Annihilating Dark Matter in the Local Group?

    Full text link
    In a cold dark matter (CDM) framework of structure formation, the dark matter haloes around galaxies assemble through successive mergers with smaller haloes. This merging process is not completely efficient, and hundreds of surviving halo cores, or {\it subhaloes}, are expected to remain in orbit within the halo of a galaxy like the Milky Way. While the dozen visible satellites of the Milky Way may trace some of these subhaloes, the majority are currently undetected. A large number of high-velocity clouds (HVCs) of neutral hydrogen {\it are} observed around the Milky Way, and it is plausible that some of the HVCs may trace subhaloes undetected in the optical. Confirming the existence of concentrations of dark matter associated with even a few of the HVCs would represent a dramatic step forward in our attempts to understand the nature of dark matter. Supersymmetric (SUSY) extensions of the Standard Model of particle physics currently suggest neutralinos as a natural well-motivated candidate for the non-baryonic dark matter of the universe. If this is indeed the case, then it may be possible to detect dark matter indirectly as it annihilates into neutrinos, photons or positrons. In particular, the centres of subhaloes might show up as point sources in gamma-ray observations. In this work we consider the possibility that some of the unidentified EGRET γ\gamma-ray sources trace annihilating neutralino dark matter in the dark substructure of the Local Group. We compare the observed positions and fluxes of both the unidentified EGRET sources and the HVCs with the positions and fluxes predicted by a model of halo substructure, to determine to what extent any of these three populations could be associated.Comment: 12 Pages, 4 figures, to appear in a special issue of ApSS. Presented at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero

    Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    Get PDF
    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity

    A Very Sensitive 21cm Survey for Galactic High-Velocity HI

    Get PDF
    Very sensitive HI 21cm observations have been made in 860 directions at dec >= -43deg in search of weak, Galactic, high-velocity HI emission lines at moderate and high Galactic latitudes. One-third of the observations were made toward extragalactic objects. The median 4-sigma detection level is NHI = 8x10^{17} cm^-2 over the 21' telescope beam. High-velocity HI emission is detected in 37% of the directions; about half of the lines could not have been seen in previous surveys. The median FWHM of detected lines is 30.3 km/s. High- velocity HI lines are seen down to the sensitivity limit of the survey implying that there are likely lines at still lower values of NHI. The weakest lines have a kinematics and distribution on the sky similar to that of the strong lines, and thus do not appear to be a new population. Most of the emission originates from objects which are extended over several degrees; few appear to be compact sources. At least 75%, and possibly as many as 90%, of the lines are associated with one of the major high-velocity complexes. The Magellanic Stream extends at least 10 deg to higher Galactic latitude than previously thought and is more extended in longitude as well. Although there are many lines with low column density, their numbers do not increase as rapidly as NHI^-1, so most of the HI mass in the high-velocity cloud phenomenon likely resides in the more prominent clouds. The bright HI features may be mere clumps within larger structures, and not independent objects.Comment: 88 pages includes 22 figures Accepted for Publication in ApJ Suppl. June 200

    The many streams of the Magellanic Stream

    Full text link
    We present results from neutral hydrogen (HI) observations of the tip of the Magellanic Stream (MS), obtained with the Arecibo telescope as a part of the on-going survey by the Consortium for Galactic studies with the Arecibo L-band Feed Array. We find four large-scale, coherent HI streams, extending continously over a length of 20 degrees, each stream possessing different morphology and velocity gradients. The newly discovered streams provide strong support for the tidal model of the MS formation by Connors et al. (2006), which suggested a spatial and kinematic bifurcation of the MS. The observed morphology and kinematics suggest that three of these streams could be interpreted as a 3-way splitting of the main MS filament, while the fourth stream appears much younger and may have originated from the Magellanic Bridge. We find an extensive population of HI clouds at the tip of the MS. Two thirds of clouds have an angular size in the range 3.5'--10'. We interpret this as being due to thermal instability, which would affect a warm tail of gas trailing through the Galactic halo over a characteristic timescale of a few Myrs to a few hundred Myrs. We show that thermal fragments can survive in the hot halo for a long time, especially if surrounded by a <10^6 K halo gas. If the observed clumpy structure is mainly due to thermal instability, then the tip of the MS is at a distance of ~70 kpc. A significant fraction of HI clouds at the tip of the MS show multi-phase velocity profiles, indicating the co-existence of cooler and warmer gas.Comment: Accepted by Ap
    corecore