15 research outputs found

    A theory of structural model validity in simulation.

    Get PDF
    During the last decennia, the practice of simulation has become increasingly popular among many system analysts, model builders and general scientists for the purpose of studying complex systems that surpass the operability of analytical solution techniques. As a consequence of the pragmatic orientation of simulation, a vital stage for a successful application is the issue of validating a constructed simulation model. Employing the model as an effective instrument for assessing the benefit of structural changes or for predicting future observations makes validation an essential part of any productive simulation study. The diversity of the employment field of simulation however brings about that there exists an irrefutable level of ambiguity concerning the principal subject of this validation process. Further, the literature has come up with a plethora of ad hoc validation techniques that have mostly been inherited from standard statistical analysis. It lies within the aim of this paper to reflect on the issue of validation in simulation and to present the reader with a topological parallelism of the classical philosophical polarity of objectivism versus relativism. First, we will position validation in relation to verification and accreditation and elaborate on the prime actors in validation, i.e. a conceptual model, a formal model and behaviour. Next, we will formally derive a topological interpretation of structural validation for both objectivists and relativists. As will be seen, recent advances in the domain of fuzzy topology allow for a valuable metaphor of a relativistic attitude towards modelling and structural validation. Finally, we will discuss several general types of modelling errors that may occur and examine their repercussion on the natural topological spaces of objectivists and relativists. We end this paper with a formal, topological oriented definition of structural model validity for both objectivists and relativists. The paper is concluded with summarising the most important findings and giving a direction for future research.Model; Simulation; Theory; Scientists; Processes; Statistical analysis;

    A hybrid genetic algorithm for solving a layout problem in the fashion industry.

    Get PDF
    As of this writing, many success stories exist yet of powerful genetic algorithms (GAs) in the field of constraint optimisation. In this paper, a hybrid, intelligent genetic algorithm will be developed for solving a cutting layout problem in the Belgian fashion industry. In an initial section, an existing LP formulation of the cutting problem is briefly summarised and is used in further paragraphs as the core design of our GA. Through an initial attempt of rendering the algorithm as universal as possible, it was conceived a threefold genetic enhancement had to be carried out that reduces the size of the active solution space. The GA is therefore rebuilt using intelligent genetic operators, carrying out a local optimisation and applying a heuristic feasibility operator. Powerful computational results are achieved for a variety of problem cases that outperform any existing LP model yet developed.Fashion; Industry;

    Code Renewability for Native Software Protection

    Get PDF
    Software protection aims at safeguarding assets embedded in software by preventing and delaying reverse engineering and tampering attacks. This paper presents an architecture and supporting tool flow to renew parts of native applications dynamically. Renewed and diversified code and data belonging to either the original application or to linked-in protections are delivered from a secure server to a client on demand. This results in frequent changes to the software components when they are under attack, thus making attacks harder. By supporting various forms of diversification and renewability, novel protection combinations become available, and existing combinations become stronger. The prototype implementation is evaluated on a number of industrial use cases

    From B-tree to B2B

    No full text
    status: publishe

    Database management issues in workflow systems: a summary

    No full text
    Currently most workflow systems use a database management system as supporting technology. But very little can be found about the actual database modeling issues in the context of workflow management. Also in the recent reference model of the Workflow Management Coalition (WFMC) nothing is mentioned about the position of a database management system, nor about modeling. This paper tries to indicate where databases come into action, and what specific problems are encountered. Discusses are : the complexity of database modeling in a workflow environment, complications as a consequence of the extreme flexibility requirements, the inherent distributed character of workflow management, the peculiarities of transaction processing, and reliability and scalability issues. As a consequence, also the suitability of existing database technology, and the relational approach in particular, can be criticized.status: publishe

    A theory of structural model validity in simulation

    No full text
    During the last decennia, the practice of simulation has become increasingly popular among many system analysts, model builders and general scientists for the purpose of studying complex systems that surpass the operability of analytical solution techniques. As a consequence of the pragmatic orientation of simulation, a vital stage for a successful application is the issue of validating a constructed simulation model. Employing the model as an effective instrument for assessing the benefit of structural changes or for predicting future observations makes validation an essential part of any productive simulation study. The diversity of the employment field of simulation however brings about that there exists an irrefutable level of ambiguity concerning the principal subject of this validation process. Further, the literature has come up with a plethora of ad hoc validation techniques that have mostly been inherited from standard statistical analysis. It lies within the aim of this paper to reflect on the issue of validation in simulation and to present the reader with a topological parallelism of the classical philosophical polarity of objectivism versus relativism. First, we will position validation in relation to verification and accreditation and elaborate on the prime actors in validation, i.e. a conceptual model, a formal model and behaviour. Next, we will formally derive a topological interpretation of structural validation for both objectivists and relativists. As will be seen, recent advances in the domain of fuzzy topology allow for a valuable metaphor of a relativistic attitude towards modelling and structural validation. Finally, we will discuss several general types of modelling errors that may occur and examine their repercussion on the natural topological spaces of objectivists and relativists. We end this paper with a formal, topological oriented definition of structural model validity for both objectivists and relativists. The paper is concluded with summarising the most important findings and giving a direction for future research.status: publishe

    Extending a dynamic modelling method using data modelling capabilities: the case of JSD

    No full text
    nrpages: 35status: publishe

    A fuzzy set and resemblance relation approach to the validation of simulation models

    No full text
    Validation is no doubt one of the most important steps in the development of an effective and reliable simulation model of a real system. It aims at deciding whether the model forms a representation of the system accurate enough for credible analysis and decision making. The methods that are currently available for validation are binary in nature, in the sense that they can only be used to either reject or accept the validity of a model. Since it is a commonly accepted point of view that all models are invalid in the strict sense, we develop in this paper a new method for validation that allows to express degrees of validity on a continuous scale. The method makes use of a fuzzy inference algorithm and of a fairly new concept in the theory of fuzzy sets, known as resemblance relations. We demonstrate how our method can easily be used to discriminate more from less valid simulation models for a real-life airline network.status: publishe
    corecore