
Code Renewability for Native Software Protection

BERT ABRATH, Ghent University, Belgium
BART COPPENS, Ghent University, Belgium
JENS VAN DEN BROECK, Ghent University, Belgium
BRECHT WYSEUR, NAGRA-Kudelski Group, Switzerland
ALESSANDRO CABUTTO, University of East London, United Kingdom
PAOLO FALCARIN, University of East London, United Kingdom
BJORN DE SUTTER, Ghent University, Belgium

Software protection aims at safeguarding assets embedded in software by preventing and delaying reverse
engineering and tampering attacks. This paper presents an architecture and supporting tool flow to renew
parts of native applications dynamically. Renewed and diversified code and data belonging to either the
original application or to linked-in protections are delivered from a secure server to a client on demand. This
results in frequent changes to the software components when they are under attack, thus making attacks
harder. By supporting various forms of diversification and renewability, novel protection combinations become
available, and existing combinations become stronger. The prototype implementation is evaluated on a number
of industrial use cases.

CCS Concepts: • Security and privacy → Software reverse engineering; Digital rights management.

Additional KeyWords and Phrases: man-at-the-end attacks, online protection, diversification, software updates,
security server

1 INTRODUCTION AND MOTIVATION
Man-At-The-End (MATE) attackers use debuggers, emulators, custom operating systems, analysis
tools, etc. to reverse engineer or tamper with software distributed by providers of software, service,
and content. The Global Online Piracy study [56] shows the continuous worldwide presence of
online piracy of digital contents, such as movies, music, and games, while the latest BSA Global
Software Piracy Study [14] states that 37% of software installed on computers worldwide is not
licensed, amounting to $46.3 billion in losses due to software piracy. The same study shows that
malware often spreads through unlicensed software distributed on the internet, causing a wider
number of security attacks and consequent revenue losses; cyber criminals are now targeting
mobile apps as well: malware variants on mobile devices increased by 54 percent last year, with
24,000 malicious mobile apps blocked every day [55].

Software protection techniques aim at protecting the integrity and confidentiality of the provider’s
assets in the software by making it harder to reverse engineer and tamper with [21, 29]. In un-
protected applications, this is all too easy. In 2016 Arxan, one of the major vendors of software
protection solutions, put forward that 98% of mobile apps lack binary code protection and can be
easily reverse-engineered and tampered with [6]. The use of protections to mitigate this issue is
becoming increasingly popular, however. In 2017 Gartner projected that in 2020, 30% of enterprises
will use software protection to protect at least one of their mobile, IoT, and JavaScript critical
applications [64].

Authors’ addresses: Bert Abrath, bert.abrath@ugent.be, Ghent University, Computer Systems Lab, Belgium; Bart Coppens,
bart.coppens@ugent.be, Ghent University, Computer Systems Lab, Belgium; Jens Van den Broeck, jens.vandenbroeck@
ugent.be, Ghent University, Computer Systems Lab, Belgium; BrechtWyseur, brecht.wyseur@kudelskisecurity.com, NAGRA-
Kudelski Group, Lausanne, Switzerland; Alessandro Cabutto, a.cabutto@uel.ac.uk, University of East London, Department
of Computing and Engineering, United Kingdom; Paolo Falcarin, falcarin@uel.ac.uk, University of East London, Department
of Computing and Engineering, United Kingdom; Bjorn De Sutter, bjorn.desutter@ugent.be, Ghent University, Computer
Systems Lab, Belgium.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/326509486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Abrath et al.

Each individual protection technique only affects a small set of attack vectors, and applying only
a few will merely divert the attacker’s attention to the remaining unprotected attack vectors. Thus,
multiple techniques need to be combined to ensure all these possible paths-of-least-resistance are
hardened. Overall, protections aim for (i) increasing the effort needed to identify successful attack
vectors; (ii) increasing the effort needed to manually exploit these attack vectors (iii) increasing the
effort needed to automate and scale-up their exploitation; (iv) minimizing the number of instances
on which automated attacks can be deployed; (v) reducing the window of opportunity for generating
income from an attack.

Protections hence need to be diversified, such that they maintain a level of resilience and different
versions can be generated of the same functionality. Defenders need a mechanism to renew (i.e.,
update) assets and protections in the field such that the attack vector identification has to be re-done
frequently, the value of assets decreases rapidly, and the protections’ behavior varies over time.
If temporal variation is unpredictable, attackers always need to take into account all protections
to remain undetected and successful. This furthermore means that not all protections need to be
active at the same time, which can allow the run-time overhead to remain acceptable.
This paper presents the ASPIRE renewability framework for delivering renewability to the

native executables and libraries that often implement the security-sensitive functionality of always-
connected mobile applications. Other types of native software can be targeted as well, as long as the
deployed protected versions can be assumed to be always connected. The renewability framework is
part of the broader ASPIRE framework that consists of a protected application architecture and the
compiler tool flow that supports the automated deployment of protections fitting that architecture.
The renewability part of that overall framework leverages existing diversity techniques [45] and
protection techniques to generate the variation required for renewability variation. This paper’s
main contributions are:
(1) The protected application architecture that supports many forms of software renewability

and the composition of those forms with other protections. It builds on existing ideas from
literature [20, 30], but the proposed design is more mature and is the only academic effort
that has actually been validated by industrial security architects on case studies of real-world
complexity [26].

(2) The compiler tool flow that supports the automated deployment of many protections, i.e.,
that injects renewable and other protections into applications to instantiate the protected ap-
plication architecture automatically. Whereas the designs pitched and evaluated in literature
only focused on one form of protections [20, 30], our tool flow is more feature complete. Most
importantly, it supports many different protections and compositions thereof as discussed
later in the paper. That capability has been validated in the industrial effort mentioned above.

(3) A discussion of a number of applications of the renewability framework, i.e., concrete forms
to mitigate specific attacks by making existing protections stronger through renewability.
The discussed forms are not comprehensive or exhaustive, but they illustrate the potential of
the renewability framework to strengthen existing protections.

(4) The evaluation of a prototype implementation of the tool flow and the discussed forms of
renewability. This prototype was also part of the mentioned industrial validation effort. Large
parts of it are available as open source for future research and reproducibility. No other, such
feature-complete tool flow has been presented in literature or is available as open source.

Section 2 discusses the MATE attack model. Section 3 presents the overall framework design
and architecture, after which Sections 4 and 5 discuss specific features. Section 6 presents the tool
flow to support automated deployment of the framework. Section 7 discusses concrete uses of the
framework to mitigate a variety of concrete MATE attack steps. Section 8 evaluates the proposed

Code Renewability for Native Software Protection 3

renewability framework and the prototype implementation in terms of robustness, overhead, and
scalability. After related work is discussed in Section 9, conclusions are drawn in Section 11.

2 ATTACK MODEL
We aim to protect software against MATE attacks. In their labs, MATE attackers have full access to—
and full control over—the software under attack, as well as over the system on which the software
runs. They can use static analysis tools, emulators, debuggers, custom operating systems and all
kinds of other hacking tools. The attacks are looking to break the integrity and confidentiality
requirements of assets, e.g., to steal keys or intellectual property, and to break license checks. They
do so by means of reverse engineering and by tampering with the code and its execution.
We focus on mobile applications distributed by providers of content, software, and services.

Often, their GUI parts are implemented in managed languages such as Java. Because of the ease with
which, e.g., Java bytecode can be reverse-engineered, and because of performance concerns, the
security-sensitive assets are typically still implemented in dynamically linked, native libraries that
are packaged with, e.g., the Java apps. The software under attack therefore consists of native binary
files (this includes both dynamically linked libraries as well as stand-alone executables). Because of
the economic value of the assets, we assume software protection techniques are deployed in and
on the native code [21].
We only target always-online applications, such as video streaming apps or edge apps that

connect to cloud servers. While this is a limitation, the omni-presence of wireless networks (4G,
5G, WiFi) has resulted in a big enough market to develop protections that exploit the always-online
feature.
Our protections target economically driven attackers. We aim at increasing their attack invest-

ment cost, at lowering their profit, and at tilting the balance between the two. The protection is
effective when the attackers expect a negative return on investment before they even start the attack
or while they are still pursuing it, as well as when they expect a higher return on investment from
attacking other providers’ software. The protections then stopped the attackers before they had a
chance to succeed. Even if the attackers succeeded, though, the protections can have delayed them
enough for the provider to make a healthy profit of the assets. In that case as well, the protections
can be considered successful.

In their lab, MATE attackers execute an attack strategy and a series of attack steps. The strategy
is adapted on the fly, based on: the results of previous attack steps; hypotheses that the attackers
formulate and test regarding assets, deployed protections, other relevant features of the software
under attack (such as the locations of relevant code and data); and the perceived path of least
resistance. With the perceived path of least resistance, we mean the sequence of future attack steps
that the MATE attackers consider the most efficient and effective to pursue given their expertise,
skills, and tool availability. We refer to existing literature for more information and models of the
attack processes as obtained through empirical experiments with various kinds of attackers on
various kinds of assets [17]. In the context of this paper, one important aspect to point out is that
in the eyes of MATE attackers, many seemingly uninteresting artifacts of software (system calls,
control flow structures, ...) are in fact interesting, because they can serve as hooks for the attackers
to guide their search to the really interesting code.

To be effective, protections should cover as many attack paths as possible that might be paths-of-
least-resistance for certain attackers. The protections can achieve this by making the individual
attack steps on the paths more expensive or time-consuming, by requiring extra attack steps, or by
preventing certain attack steps and the automation thereof. Section 7 will discuss several concrete
attack steps against which protections exist that can be made more effective by making them
renewable with the presented framework and architecture. In general, these steps are attack vector

4 Abrath et al.

identification and attack vector exploitation steps that require a certain amount of repeatability,
such as the iterative development and later use of customized scripts that work well as long as the
software they operate on remains the same.
It is commonly accepted that sufficient protection can only be achieved by combining many

protections in a layered fashion. The deployed protections then become assets themselves, pro-
tecting the original assets, the artifacts that attackers can hook onto, and each other. The value
of the proposed renewability framework and architecture hence cannot be judged in isolation.
The supported forms of renewability are supposed to be combined with other protections that
protect against additional attack vectors, and that protect the components of the renewability im-
plementation. The communication to a secure server to download renewed assets and protections,
for instance, is supposed to be protected by sufficiently strong cryptography, of which the keys
are protected through white-box cryptography, of which the code is obfuscated to prevent static
reverse engineering, and anti-debugging techniques to protect against dynamic reverse engineering.
Similarly, remote attestation is supposed to be used for hampering replay attacks, i.e., for checking
that a client application actually executes freshly downloaded code rather than old copies stored
on disk by an attacker.
In the ASPIRE project, we reached the necessary composability of renewability with other pro-

tections in an open-sourced protection tool chain [7]. The renewability framework and architecture
presented here are only one of several novel aspects of that tool chain. Composability of all kinds
of protections in the tool chain is out of this paper’s scope.
Our MATE attack model neglects hardware-based protections. Off-the-shelf processors offer

limited protection against MATE attacks. SGX enclaves can leak information in contexts similar to
MATE attacks [11, 46]. Furthermore, they are restricted in their interaction with outside components,
so they cannot protect all code. TrustZone [4] is only effective in well-configured systems. In a
lab, a MATE attacker can easily disable the protection. Furthermore, many lower-end devices lack
hardware protection. For those, software-only protection is the only available option. Moreover,
hardware-based protection is considered a risk by some, because it is expensive and at the same
time not renewable [35]. The reason for this is that when a hardware defense mechanism is broken
at some point, e.g., because implementation bugs are discovered, it is typically very hard—if not
impossible—to fix it, so all systems relying on that hardware are vulnerable from then on. Software
renewability offers a complementary solution for such scenarios.

3 THE ASPIRE RENEWABILITY ARCHITECTURE
Figure 1 visualizes the ASPIRE renewability architecture. It is based on code and data mobility,
which builds on the existing concept of code mobility [15]. From the binary file of a client app
or library that needs to be protected, parts of the statically allocated code and data sections are
extracted. These parts correspond to code that will need to be renewed dynamically, i.e., when the
app or library is actually running. By simply removing this code and data, it is already protected
against purely static MATE attacks. The code and static data (Client Application Code and Data
in Figure 1) that remains in the binary is extended with support code: Communication Logic, a
Downloader, and a Binder.

The Communication Logic implements protection-agnostic communication and protocols to the
Server Portal. Its prototype implementation offers a simple request protocol and a WebSockets
protocol [39] for protections that need occasional connections and/or server-initiated communica-
tions and a persistent connection. (Replacing WebSockets with a more secure implementation is
orthogonal to this paper.)

The Downloader implements the communication. Upon requests from the Binder, it connects to
the Mobility Server to download mobile code and data blocks. The downloaded blocks are then

Code Renewability for Native Software Protection 5

server client

Fig. 1. ASPIRE Renewability Architecture. On the right, the native application from which static code and
data has been extracted and to which code mobility components have been added. On the left, the original
application server in case the application was an online application, and all server-side components that
implement the many forms of renewability.

mapped at randomized locations on the heap of the running client. In basic code mobility, these
blocks correspond to individual code fragments extracted from the statically allocated code of the
protected app.
The Binder initiates the download requests on demand and ensures that all control transfers

and accesses to and from downloaded code and data execute correctly. Each transfer into a mobile
block is redirected via a stub that transfers control to the block’s address, which it finds in a Global
Mobile Redirection Table (GMRT). Until a block has been downloaded, the found address is that of
another stub that invokes the Downloader with the correct input and that performs the necessary
allocation and bookkeeping. This includes replacing the stub’s address with the block’s address in
the GMRT, and then continuing execution at the entry of the block. All transfers out of a block are
transformed into offset-independent code by adding a level of indirection [15].

In basic code mobility, a downloaded mobile block remains mapped on the heap of the running
process until it halts. To support advanced forms of renewability, we extended the Binder to support
the flushing of mapped blocks and subsequent re-downloading of renewed, different versions of
those blocks. We also extended it to support mobile data, which is necessary to support several
interesting forms of renewability that will be discussed later.
The protection-agnostic ASPIRE Server Portal forwards communications between clients pro-

tected with (multiple) online protections and the corresponding services. In our prototype, it also
supports client-server code splitting [16] and remote attestation (RA) techniques [58].
The Renewability Manager selects which mobile code and data blocks need to be delivered to

a running client. By varying the mobile block versions that are delivered to different clients and
at different times, the assets and protections implemented by that mobile code and data can be
renewed. The Mobility Server takes care of the actual delivery and interaction with the Downloader
in stateless communication: The Server does not keep track of existing sessions with clients for the
sake of scalability; it just serves the right block whenever a request arrives from one of the clients,
based on the policy implemented by the Manager.

6 Abrath et al.

The mobile code and data blocks are stored in a database (DB). That Diversified Block DB can
hold multiple, diversified versions of each block. For most forms of renewability, the different
mobile blocks and the different versions thereof, are independent of each other. This is the case
because either all versions of a block implement exactly the same semantics, or because one block’s
semantics is independent of the other blocks’ semantics. For some forms of renewability, however,
there may exist dependencies between the blocks. Some interesting cases are discussed later.
Different server-side code generators (Renewable Block Engines) produce diversified mobile

blocks. Depending on the renewability policies, these generators can generate blocks a priori or on
demand. For example, in case a policy only aims at delivering different versions of a block with the
exact same semantics, the DB can be populated a priori. If specific versions need to be generated to
react to events, they can instead be generated on demand. Obviously, if the event to react to is an
actual request from a running app, the on-demand generation will result in a higher response time.

The renewable code engines are application-dependent, as they generate mobile blocks matching
the code and data fragments that were extracted from the static binary of the client software.
Section 6 discusses how these engines are generated. Obviously, but not drawn in Figure 1 to keep
it simple, the Renewability Manager also has to interact with the code engines to know what code
is in the DB, and to trigger on-demand generation of blocks.
Furthermore, the Renewability Manager can interact with other protection servers. Figure 1

includes an example Remote Attestation Service. That interaction can be exploited in two ways.
First, the renewability policy itself can interact with the other protection server. In the case of
RA, the interactions can involve notifications of failed attestations, and communication about the
mobile blocks that were delivered to the client such that the RA can attest them. Secondly, the
other online protection might also have client-side protection components, such as specific hash
functions used in RA code guards that need to be delivered as mobile blocks via the Renewability
Manager. Figure 1 shows this for mobile RA blocks. Note that the difference between the Mobile
RA Code blocks and the Code and Data blocks in the Diversified Block DB is that the former are
application-independent components of a deployed protection, while the latter implement original
client-side functionality.

4 INTEGRATING RENEWABILITY INTO EXISTING APPLICATIONS
In order to integrate renewability into existing applications, there are two choices that need to
be made: (1) where and how decisions will be made to renew blocks, and (2) decide how these
decisions will be communicated with the client application. We call the former the renewability
policies, and the latter the renewability communication design. We will now discuss the spectrum
of options and trade-offs that can be made for both kinds of policy.

4.1 Renewability Policies
Renewability policies define when a client needs to discard and replace downloaded mobile blocks
with renewed ones. The decision to renew a block can either be made server-side, or it can be
made in the client itself. When considering client-side decisions, these can be made either without
external inputs (the logic is set in stone), or it can be that the application implements a policy that
has been dictated to it by the Renewability Server. Either way, a MATE attacker might be able
to learn or even subvert the renewability policies. A major advantage of server-side decisions, is
that the client then only learns about the concrete decisions taken by a policy (i.e., the flushing
commands), and not about the rules that lead to these decisions. On top of that, a persistent,
server-initiated connection to pass policy decisions to the client enables dynamic policies that can
be adapted on the fly. A compromise between these two approaches would be to send a policy

Code Renewability for Native Software Protection 7

description to the client with each served block. A policy would then be immutable in between the
delivery of blocks. In the rest of this section we will consider server-based renewability policies.

When the renewability policy is implemented on the server, we can eithermake this an application-
agnostic decoupled policy, or a coupled policy that is tightly integrated with the Original Application
Server.
In the case of decoupled policies, no changes need to be made to the application source code

when compared to the original, non-renewable ASPIRE architecture: It suffices to add annotations
in the source code. The decision of whether and when to renew certain blocks is made completely
independently from the application, by the server-side RenewabilityManager.When this component
decides to renew a certain block in a certain application instance, it sends a flushing command to
that application instance.
Implementing policies in a decoupled manner on the renewability server somewhat restricts

the manner in which the renewability policies can react to events occurring in the protected
application. We would however argue that there is still quite a lot of leeway left to react: We can
compose different (application-agnostic) protection techniques and change the policies based on
the state and observations of these other protection techniques. For example, in our prototype
implementation, the integrity violations that are observed by the remote attestation component are
passed on to the renewability server, which changes its policy based on these observations. Several
reactions are possible: the Mobility Server can stop serving blocks, the client can be notified in the
next communication through the ASPIRE Server Portal, or the Original Application Server can be
informed that it should stop delivering content [58]. Furthermore, it has already been demonstrated
in the ASPIRE project that other protections, such as client-server code splitting, can be used to let
a protection server keep track of different events in the client [16, 58]. Decoupled policies thus lead
to a clear separation of concerns.
Alternatively, in a coupled policy, the (server-side) application logic is tightly integrated with

the renewability policy. The decisions of which (specific instances of) blocks to flush can be based
explicitly on the state in which a specific client happens to be, and can be made to coincide with
other actions that are taken in the application server. For example, in the case of a streaming video
application, the streaming server can be integrated in the renewability policy so as to force the
client to download a different decoder function after a specified number of video frames have been
sent. The application server can thereafter send differently encrypted or encoded frames, which
the old decoder function is not able to decode. This option offers the vendor much more control
over the renewability policy. The price, however, is a sharp dent in the separation of concerns, as
the protection is now to a large degree hard-coded in the application source code.

4.2 Renewability Communication Design
After a decision has beenmade by the renewability policy, it has to be communicated to the protected
application. We elaborate on two possible designs for this communication: an application-agnostic,
decoupled communication design, and a tightly-integrated, coupled communication design.
In the case of a decoupled communication design, we can build on existing the ASPIRE com-

ponents: The client-side Binder component handles flushing commands received from the server,
while the server-side Renewability Manager sets up a bi-directional connection with the application
for future, server-initiated flush requests. Flushing consists of the deallocation of individually
specified—or even all—mobile blocks, the resetting of addresses in the GMRT, and informing the
server of its completion. In this manner, the server can be aware that flushing is not happening,
and suspect the client is being tampered with. When the client fails to confirm the flush request
within a given time, an appropriate reaction can be activated.

8 Abrath et al.

Conversely, in a coupled communication design, both the protected application logic and server
logic (including the existing protocols) are augmented in order to support all communication logic
that is required for renewability (e.g., receiving new blocks, receiving and confirming flush requests,
etc.). The application server needs to communicate directly with the Renewability Service to obtain
mobile blocks, and will need to embed those blocks—together with descriptions of renewability
actions—in the packets sent to the client application. This is practical, e.g., for streaming video
applications, where mobile blocks can be sent together with the video frame data. The client
application is then also adapted by adding the necessary functionality—in the client’s source code—
to handle the extra content of packets coming in from the application server, and, if necessary, to
respond by inserting responses in outgoing packets.

5 MOBILE DATA BLOCKS
When code fragments are made mobile, it suffices to replace all call sites with stubs, and use a
simple indirection step to either download the code fragment, or to execute it immediately. In
contrast, data blocks can be accessed from any location in the program that can dereference a
pointer to the block. Due to the problem of aliasing [28], precisely identifying all those locations for
all potentially useful mobile data blocks is impossible. Even if it would be possible, adapting all code
to ensure that a data block is downloaded before it is accessed would introduce an unacceptably
high overhead.

The solution is not to adapt the program locations where pointers are potentially consumed, but
instead to adapt the locations where pointers to the data blocks are produced.
To produce an address of a statically allocated data section during the execution of a program,

three options exist. First, the address of some section can be available in the statically allocated
data of the program, i.e., in another data section. Such cases are trivial to identify in object files, as
they are marked in the relocation information that linkers consume to relocate such addresses. The
second option is that the address of some data or data section is computed in a code fragment of
the same binary. Those cases can also be identified through the relocation information. The third
option is that the address of some section is produced or statically stored in another binary (e.g., a
library) that is loaded into the same process. That case can only occur when at least one symbol
in the section at hand is exported from the binary containing the section. If no such symbol is
exported, it is impossible for the dynamic loader to let another binary relocate a symbolic reference
to the section.

In short, data sections linked into a binary become accessible if and only if (i) a symbol residing
in the section is exported from the linked binary, or (ii) a relocatable address residing in the section
is stored in another section that is accessible, or (iii) a relocatable address residing in the section is
produced in code being executed.
These conditions for being accessible are already used by linkers. The GNU linker option

--gc-sections [9] lets it garbage collect all inaccessible sections. Link-time program compaction
techniques have pushed this further by combining inaccessible section analysis with whole-program
unreachable code analysis [25]. Our support for data mobility relies on the same principle: We
limit mobility to data blocks that (i) correspond to full data sections in the object files and that (ii)
become accessible only because their addresses are computed in code that is marked to become
mobile and possibly renewable. We exclude data sections that become accessible because their
addresses are stored in other data sections or because they are exported.

The limitation to full data sections poses no problems for the forms of renewability that will be
discussed in Section 7. Most compilers offer a compilation flag -fdata-sections to store statically
allocated variables in a separate data section each. So the granularity for making data mobile is
that of individual global variables. This suits our purpose.

Code Renewability for Native Software Protection 9

The second limitation poses no problems for the forms of renewability we currently support
either, because we only make data mobile in connection with mobile code. When a source code
fragment is annotated with code mobility pragmas, and the option of data mobility is enabled in
the pragma, the link-time rewriter automatically identifies all data sections that become accessible
only through addresses produced in that code fragment. Those data sections are then made mobile
together with the code fragment. Our data mobility can hence be seen as code mobility where
statically allocated data “owned” by a mobile code fragment becomes part of its mobile block. In
Figure 1, this is visualized with arrows from mobile code blocks to mobile data blocks in the heap
memory region of the client-side application. Remember, those arrows do not indicate that only
the mobile code blocks can access the data. They only indicate that the mobile code blocks contain
the code fragments that generate pointers to the mobile data blocks in the program state as the
mobile block is executed, thus making the mobile data blocks accessible to other code fragments.

Because the Binder and the injected stubs ensure that each mobile code fragment is downloaded
before it is executed, and because they download the mobile data together with the code that can
produce the data’s address, they also ensure that mobile data is downloaded before any pointer to
it is generated or used to access the data.

6 TOOL FLOW SUPPORT
Figure 2 depicts the tool flow that integrates the renewability framework with protections. Full
black arrows denote the compiler and protection tool flow of code and data that includes basic code
mobility [15] but without renewability. Dashed black arrows denote the generation of renewable
code generators. This code generator generation process was added to the existing tool chain for
supporting renewability. Dashed red arrows visualize the flow of code and data when renewed
mobile blocks are generated, either a priori or on demand.

Up-front, we want to clarify that the depicted tool flow extensions in support of different forms
of renewability are not are not fundamentally new concepts. They are instantiations of known
mechanisms to generate software diversity which can be done in many different phases of the
software development life cycle as described in literature [45]. We simply developed instantiations
that fit our overall tool flow design and the goal of ensuring composability of renewable protections
with many other protections.

6.1 Existing Static Protections and Mobility Tool Flow
The existing tool flow supports the insertion of software protections in three phases. First our tool
chain contains a number of source-to-source protection plug-ins. These take seeds, keys, and other
configuration parameters as input, together with the application source code to be protected. In
step a , the plug-ins produce transformed, (partially) protected application source code, as well as
protection source code that implements additional protection functionality to be injected into the
application. Examples of the latter functionality include functions that implement hashing for code
guards and initialization routines for certain protections such as routines that set up the dynamic
graphs used to which opaque predicate computations in the transformed application source code
refer.

The operation of the plug-ins is based on source code annotations such as pragmas and attributes.
These annotations allow one to mark the code fragments that need to be protected and to specify
the protections to be deployed, their parameters and configuration. Figure 2 only depicts one
source-to-source plug-in, but any number of them can be chained in practice [7].

Both sets of source code produced by the source-level plug-ins chain are then fed to a compiler
to produce object files in step b . The compiler can optionally inject additional protections. In our

10 Abrath et al.

source-to-source
protection	plug-in

app	
source	code

compiler

binary	rewriter
1)	protector
2)	extractor
3)	protector

protected	app

renewable	protection
code	generator

protection	
source	code

config &	code

new	
seeds	&
keys	&	
config

renewed
source	code

annotation	extractor

(static)	linker

seeds	&	
keys	&	
config

app	&	protection
object	code

a.out

renewed	
object	code	

block	extractor

renewed
mobile	blocks

mobile	blocks

seeds	&	
keys	&	
config

new	seeds	&
keys	& config

renewed	mobile	blocks

a

b

d

c

f

g

h

i

e

app	source	code

Fig. 2. Compiler tool flow for generation of protected application and renewed mobile blocks.

prototype, this is not the case, as we use a standard LLVM to compile Linux and Android binaries.
However, diversifying [47] and obfuscating [41] forks of LLVM could be used just as well.

From the source code files fed to the compiler, the remaining annotations and their line numbers
are extracted by an annotation extractor in step c . After the object files have been linked, both the
object files, the linked binary a.out, and the extracted annotations are fed to a binary rewriter,
together with additional seeds, keys, and configuration info. The binary rewriter deploys binary-
code-level protections, extracts blocks to make them mobile, and applies further protections, both
on the extracted code and on the remaining, static code. In step d the rewriter produces the fully
protected application as well as an initial set of mobile blocks as specified by the code mobility
annotations extracted from the source code. The binary rewriter maps source code annotations
onto binary code fragments by means of the extracted source line numbers and the line number
information present in the object files.

6.2 Renewable Code Generator Generation
The existing static tool flow is extended in several ways to enable renewability for both protection
code and original application code. First, the spec of the source code annotations is extended to
support renewability. The tool chain documentation provides a full spec of the annotations [7].

, Vol. 1, No. 1, Article . Publication date: March 2020.

Code Renewability for Native Software Protection 11

Secondly, source-to-source plug-ins are extended to produce not only the initial code version, but
also the necessary code and data for generating additional code versions later on. See e in Figure 2.
Per protection that can be made renewable, three components are added. First, a renewable protection
code generator is needed, and its code and configuration inputs need to be stored persistently. The
generator is a version of the plug-in that can be invoked separately, with new seeds, keys, and
other configuration parameters to generate different code versions. Its code and configuration
input contains a partial copy of the original source code and annotation input of the plug-in. This
generator can be application-specific, in which case it is produced or at least customized on the fly
by the plug-in during the source-to-source protection, but it can also be a pre-installed tool.
To inject the renewed source code generated by the generator and compiled by the existing

compiler into actual mobile blocks, a block extractor is needed. This can also be application-specific
or pre-installed. It knows, for the form of protection supported by the plug-in, how to extract
binary code fragments and data sections from object files, which can trivially be done with standard
GNU binutils tools, and how to create new mobile block versions out of them to be stored in the
Diversified Block DB.

6.3 Renewable Code Generation
With the presented tool flow, renewed versions of code and data blocks can be generated. For
source-level protections, the generators are invoked on their input codes and configurations, albeit
of course with new, different seeds, keys, and parameters. The result of this step f is renewed
source code, either of the original application or of some protection. This renewed source code is
then compiled to produce renewed object files in step g , after which the block extractor extracts
and assembles renewed mobile blocks in step h .

For binary-level protections, our prototype of the renewal process re-runs the binary rewriter on
its inputs with new seeds, keys, and configuration parameters. The binary rewriter then produces
renewed mobile blocks in step i . This is not very efficient, as each invocation of the rewriter
re-executes all the binary-level processing passes, including passes on code fragments that do not
become mobile. With some engineering, this can definitely be made more efficient.

6.4 Discussion
Neither the framework architecture nor the tool flow are limited to application executables. As is,
they can also be deployed to protect dynamically linked libraries. In Figure 2, both a.out and the
protected app in that flow can in fact be libraries such as libmylib.a.
In our proof-of-concept implementation resulting from the ASPIRE project, all the necessary

client-side components (Communication Logic, Downloader, Binder, ...) are linked statically into
either an executable or into a dynamically linked library, and non-exported symbols are stripped.
This means that, e.g., the Binder cannot be identified by means of symbol information, and also that
its code is mingled and protected with the original application or library code. This design choice
does imply that when multiple dynamically linked libraries protected with renewable protections
are loaded into the same application process, those components will be loaded and executed
multiple times, possibly even in parallel. To avoid this overhead, one could opt to put the client-side
components in a separate dynamically linked library, of which only one copy then needs to be
loaded into a process.

That would lower the level of protection, however, as all the interfaces to those components are
then exposed in the libraries’ exported and imported symbols. Furthermore, in that case a MATE
attacker would only have to attack one version of those components to defeat all renewability
in the process. When there is one copy per library, all of which can be protected with different,

12 Abrath et al.

independent anti-tampering and anti-reverse-engineering protections, such as different forms of
obfuscations, remote attestation, and renewability, an attacker will have to invest much more work.

Secondly, putting the components in an external library would imply that the single version of
each component that is then loaded into the running process has to perform the renewability book-
keeping of multiple libraries that were possibly compiled and protected completely independently
from each other. This would make those components much more complex, and it would significantly
impact important aspects of the software development life cycle. For example, it would imply that
only libraries protected with compatible forms of the renewability support can be loaded together
into a process. This would make it practically infeasible to load protected libraries from independent
vendors into the same process, which would result in a DLL Hell as existed on Windows in the
past. In the current design, by contrast, every loaded library and the renewability components in it
are oblivious to the fact that other protected libraries with renewability components are running
in the same process. They can even connect to different servers. This is obviously useful: It is not
unimaginable that vendors of different libraries (e.g., libraries that implement vendor-specific DRM
plug-ins for Android’s media and DRM frameworks) only trust their own servers.

Also on the server, each of the running libraries are treated in isolation. Even if multiple libraries
running in some client process connect to the same server, that server does not know that its
incoming requests are originating from the same running process. This greatly eases the design
and development of the server functionality.
Of course, this design choice limits the flexibility of the server decision processes. Currently,

there is no global coordination between the renewability services serving the multiple libraries
that may be running in the same process, and that hence may be undergoing the same attack. As
future work, we plan to investigate whether such coordination can be supported effectively and
efficiently.

7 MITIGATIONS AGAINST CONCRETE ATTACKS
The renewability framework supports a range of renewable software protections that mitigate
MATE attack steps.

7.1 Syntactically Diversified Mobile Code
Dynamic analysis is a common method for reverse engineering. It can be done manually, e.g.,
with a single-step debugger, or it can be automated, e.g., by collecting trace information with
an emulator. It can also be semi-automated, e.g., by writing small debugger scripts that steer the
program execution up to the specific point of interest by means of breakpoints and watches, at
which point manual single stepping can start to collect additional information. Such scripts are
often developed iteratively: Each time more information is obtained, the scripts are adapted to zoom
in on the next piece of useful information on the attackers’ path. All of these approaches commonly
involve multiple runs of the same program. This also happens in, e.g., delta-debugging-like attacks,
in which the difference in program execution behavior on different inputs is analyzed [5], and
it obviously also happens in fuzzing attacks [54]. Such attacks require repeatability, and become
harder if the code fragments that are revisited differ from one run to the other.
This can be achieved by syntactically diversifying the code in renewed mobile blocks. Rather

than creating one version of a mobile block, multiple semantically equivalent but syntactically
different versions can be created and delivered.

Our prototype tool flow creates versions by stochastically applying obfuscations (opaque predi-
cates, branch functions, and control flow flattening) and code layout randomization on the extracted
code fragments. By initializing a pseudo-random number generator with varying seeds, versions
can be generated that feature varying control flow graphs and code layouts [22]. This makes it

Code Renewability for Native Software Protection 13

significantly harder, e.g., for attackers to automate the setting of breakpoints in their scripts. It also
makes it harder to compare multiple traces in collusion attacks.
The applied obfuscations have previously demonstrated their effectiveness in the context of

collusion attacks that rely on program diffing [22], where they prevent diffing tools to automate
the identification of the corresponding code fragments in two syntactically different versions of the
same software. We therefore conjecture that it will be non-trivial for an attacker to automatically
overcome the protection provided by syntactically diversified mobile code.

7.2 Semantically Diversified Mobile Code
Syntactical diversification does not hamper all attack tools. For example, pointer chaining tools (e.g.,
Cheat Engine - https://www.cheatengine.org/) can still find relevant data in randomized memory
layouts during repeated executions. In a first run of a program, the attacker then identifies the
relevant data in the process memory space manually. The tool then collects the pointer chains to
the identified data. These chains are lists of offsets. For example, the transparency value of a wall in
a shooter game might be located at the end of the chain *(*(*(frame_pointer_main+24)+4)+8),
which does not depend on the code syntax or layout, or on the data layout as affected by address
space layout randomization. Cheaters might want to make the walls transparent to see their
adversaries through them. For such chains to become invalid for repeated executions, the order of
fields in C/C++ structs and classes needs to be diversified, the location where data is stored in stack
frames needs to be diversified, the order in which parameters are passed to functions needs to be
diversified, etc.

We hence need diversification that also changes the semantics of individual fragments, i.e., the
relation between the process state before and after executing them. For example, when the fields
in a C struct are reordered, code fragments writing to the fields will write to different offsets in
allocated memory blocks, and hence implement different semantics.

Deploying such diversifications is more difficult, however, because they have amore global impact
on the generated code. If the order of fields in a struct is altered, all code in the binary that accesses
the struct will change as well, in a consistent manner: the same change in offset will occur all over
the program. Likewise, if the signature of a procedure is altered, e.g., by reordering its parameters,
the procedure’s code body will change, but so will the code of all its callers. When aggressive
compiler optimizations are used, those initial changes can result in ripple effects throughout the
binary code of all directly or indirectly affected functions. In general, almost all data and data flow
obfuscations or diversification techniques [21] have more global effects on the generated code. To
support such forms of diversification, a client that is served multiple diversified code fragments by
a renewability server can only execute correctly if all of the fragments served during a single run
implement and assume consistent semantics.
Our approach supports this, because the server can partition the diversified mobile blocks into

consistent groups: The Renewability Manager can be informed which versions of the mobile blocks
in the database feature consistent semantics, which do not, and which ones are independent. Simple
server-side bookkeeping can then ensure that whenever some block is requested, it only delivers
blocks that are independent of or consistent with previously delivered blocks.

Of course, the use of this form of semantic fragment-level diversity restricts the freedom of the
renewability policies to replace fragments within a single execution of a program: Once data values
or the layout of data in the client program’s address space have been produced by a certain first
code version, all code executed later during that execution has to be consistent with that first code
version.

https://www.cheatengine.org/

14 Abrath et al.

Still, the use of attack tools and reuse of attack scripts over multiple runs of an application can
be significantly hampered by this form of protection. In particular, it will decrease the effectiveness
of pointer chaining tools.
To support semantic renewability, we extended the basic tool flow of Figure 2 somewhat. For a

prototype implementation that changes the layout and order of fields in structs and the parameter
order of functions, we rely on a source-to-source protection plug-in to generate the diversified
code. To enable the identification of all binary code fragments that undergo relevant changes as
a direct result of the source-level diversification or as a result of ripple effects through compiler
optimizations, multiple approaches can be envisioned.
In our approach, we do not want to restrict or alter the used compiler. Instead, in line with

common industrial software development life cycle requirements, we want to keep treating the
used compiler as a black box. Then two options remain. The first, more conservative option, is to
track references to diversified function signatures and structs in the rewritten source code, to mark
any function that directly or indirectly touches (directly or indirectly) upon such references as
dependent on the deployed diversification, and to enforce separate compilation of each function in
the compiler such that compiler optimization ripple effects are bound to individual functions. This
strategy will conservatively over-approximate all functions or code regions that might be affected
by the deployed diversification, which allows us to make all of those mobile and renewable.

A more accurate identification of the altered binary code fragments, i.e., the ones that need to be
made mobile and renewable as a result of source-level diversification and potential ripple effects,
can be achieved through binary diffing. To enable this diffing in our tool flow, we generate all
diversified versions up-front. We also compile all of them up-front. We then run a binary differ
that compares the compiled binaries, and identifies the precise differences between the compiled
versions. The binary code regions embodying those differences are then marked to be made mobile
and renewable in the binary rewriter. Only after all versions are compared and all necessary regions
are identified do we run the binary rewriter to extract the necessary blocks from all program
versions. The remaining rewritten binary in which these blocks are removed, is then identical
across all versions, as it consists of the binary code fragments that did not differ at all across the
different versions, whereas the mobile blocks contain all the differing code.

This black-box approach offers the advantage of not needing any change to the used third-party
compiler and linker, or to the internal operation of the binary rewriter. The developer of the
source-to-source protection plug-in that implements this semantic diversity hence does not need
to invest any effort in learning all the ripple effects that those three complex tools might induce as
a consequence of his source code transformations. The diffing tool automatically exposes all code
impacted by the ripple effects. We implemented our own Clang-based source-to-source rewriter,
but our approach easily allows for other (already existing) source-to-source rewriters.

It is important to note that the semantic diversification does not need to be limited to individual
code fragments. If appropriate, it can easily be extended to externally visible changes to the
semantics of the whole program as well. For example, in some cases it might be useful to renew the
semantics of code fragments that prepare a payload to be sent to the original application server (see
Figure 1) or that consume a payload received from the application server. Formally, this changes the
semantics of the whole client program, but if this is coordinated with the semantics implemented
on the application server, this can be perfectly fine, and happen transparently to the end user of
the software.

7.3 Dynamic and Time-Limited White-Box Cryptography
White-box cryptography (WBC) is a technique for protecting the confidentiality of cryptographic
keys in software [18, 61]. The literature mostly focuses on fixed-key implementations, where the

Code Renewability for Native Software Protection 15

key is hard-coded in the software. Rather than including a key as a constant input to a standard
implementation of a cryptographic primitive, which is trivial to attack in a MATE scenario, a
custom version of the primitive is included in the software, which hard-codes the key in a way that
it cannot be extracted (easily), e.g., by encoding it in large randomized tables or code structures.
Fixed-key implementations are acceptable for some use cases such as hard-coding global boot-

strap keys. However, for many industrial use cases keys need to be updatable. For example, for
personalizing software with application-unique keys or for installing service-dependent keys,
cryptographic implementations can ideally be instantiated with keys at run time [12]. While there
is almost no literature on this, several companies are selling such dynamic-key white-box implemen-
tations; there is no publicly available information on they are built. One possible approach would
be to build special-purpose white-box implementations which receive a protected version of the
key as input. would trivially expose the key. The protection of the keys then needs to be integrated
in the application design, and additional routines such as preprocessing the protected key and key
schedule algorithms need to be integrated: This introduces a lot of additional complexity and can
have a considerable impact on performance and code size. Another approach is to update existing
fixed-key implementations at run time. In the most common white-box implementations such as
that of Chow et al. [18], key material is embedded in look-up tables. It suffices to update these
tables in order to change the key, so the technique of mobile data blocks can be applied to achieve
dynamic white-box implementations. Other white-box techniques do not solely depend on look-up
tables [8, 13], but also encode the key in complex code structures. Updating the key then implies
updating the code. This is also supported out-of-the-box with our renewability framework, as the
code to be updated can trivially be annotated to be made mobile. In summary, our framework offers
all that is required to evolve from static key WBC to dynamic key WBC.
Still, designing secure WBC implementations, whether static or dynamic, remains a challenge.

All currently proposed designs have been broken, and recent proposals that are submitted to the
ECRYPT White-Box Cryptography Competition (the WhibOx Contest) [2] are challenged in a
matter of hours or days. Therefore, rather than focusing on designing implementations that give
long-term security guarantees (and will probably be very slow and large) an alternative approach
is to focus on more efficient but less secure implementations that are renewed at high frequencies.
We denote these as time-limited white-box implementations. Such WBC implementations can
protect short-lived session keys or temporary access tokens with acceptable performance. With
those implementations, it are then not the keys that need to be rotated frequently, but the WBC
implementations that embed the keys. This rotation is readily supported by our renewability
framework.

Combining this form of renewability with the already discussed forms of diversification can then
help to achieve longer-term protection as well, namely by ensuring that the rotated implementations
differ in more respects than simply embedding different keys, thus hampering attackers in reusing
simple attack scripts.

7.4 Diversified Static-To-Procedural Conversion
Static data such as strings can serve as hooks in many attacks. To protect these against static
inspection, static-to-procedural conversion [21] replaces the static data by invocations to injected
procedures that compute the data on the fly. If dynamic attacks are then also made harder, e.g.,
by combining this protection with anti-debugging [3], strong protection can be obtained. With
renewability, the level of protection can be increased even further: If the code that computes the
data changes between every run of a program, the attacker will have to adapt and re-execute his
attack script to extract the data he is after whenever a new version is downloaded.

16 Abrath et al.

This form of renewability is readily supported: It suffices to let the source-to-source protector
generate randomized procedures to replace static data, and to annotate these to have them extracted
by the binary rewriter.
In a sense, this form of renewability is situated somewhere in between syntactic and semantic

diversification: the overall semantics of the renewed code blocks stays the same, as they produce
exactly the same constant data, but they may do so using widely varying algorithms. Implementation-
wise, it is similar to WBC in the sense that the procedures generated at build-and-protection-time
simply need to be annotated to be made mobile, and the generator needs to be invokable at
deployment time to generate different versions.

7.5 Diversified Instruction Set Randomization
A popular form of obfuscation is to translate an application or part thereof is to some virtual,
randomized bytecode instruction set architecture (ISA). At run time, the bytecode is emulated.
Popular tools that implement this form of emulation-based obfuscation are Code Virtualizer [48],
EXECryptor [53], Themida [49], and VMProtect [59]. Unlike native code formats—which are
well-documented by processor manufacturers—the randomized ISA is not documented. It is also
diversified for each protected program to reduce the learnability for attackers.

Custom bytecode can be made mobile when it is read-only data where the set of code locations
that refer to it is clear and limited. In the ASPIRE tool chain, security-sensitive chunks of native
code are translated into bytecode chunks [27, 62]. The original chunks are replaced by stubs that
invoke the emulator, passing it a pointer to the data representing the bytecode. This scheme fits our
mobile data block support perfectly: The stub becomes mobile code, and the bytecode—to which
only the stub produces a pointer—becomes a mobile data block attached to that mobile code.
Bytecode renewability can then be achieved by combining diversified mobile bytecode with

semantic diversification of the emulator. Both the semantics and the syntax of the bytecode can
then vary over time; for each execution a corresponding interpreter and bytecodes are delivered.

7.6 Evolving Protections
The proposed tool flow and architecture pose no limits on the sizes of the mobile blocks. In particular,
renewed blocks don’t need to have the same sizes. This helps in supporting gradually evolving
renewability, e.g., where over time more complex forms of protections are delivered to client
applications as those protections become available in response to detected attacks.
For example, when more advanced attacks on WBC crypto schemes become available over

time that reduce the search space for brute-force attacks, or when faster brute-force methods
become available, more complex versions of the white-box algorithms can be delivered to the
client applications to catch up with the attacker’s capabilities. In many WBC schemes, this can be
achieved with bigger tables that embed the secret keys.

Another example is that of an evolving license check. Many applications are distributed free of
charge, but a license key needs to be acquired through an online transaction in order to run the
application or to make the full functionality available. Often, a legitimately acquired license key
will work on multiple versions, including software updates released after the original transaction.
Typically, individual buyers get individual, fingerprinted l icense keys to enable the vendor to
trace illegitimate redistribution of keys. By contrast, the code that checks their validity is the
same for all buyers of a specific version of the software. Once that code is reverse-engineered, it
becomes straightforward for crackers to generate license keys to sell on the black market. However,
the business model of those crackers can be undermined, and the trust placed in them by their
customers can be broken, by renewing and extending the validity checks in each released version.
Whereas the vendor can know all validity checks up-front, even those that will only be included in

Code Renewability for Native Software Protection 17

future releases, the cracker only knows the checks in the reverse-engineered version. So whereas
the vendor can easily generate forward-compatible keys, the cracker cannot. This obviously has a
big negative impact on the value of the keys they generate. Traditional implementations of this
protection scheme, in which the checks are embedded statically in released versions are obviously
limited in terms of the frequency with which the checks can be updated. With renewability as
delivered by our framework, it is easy to overcome this limitation.

To support such evolving protections with our framework, the only aspect that needs to remain
constant from one mobile block to another is the binary-level interface of each renewed code block,
i.e., the way data is passed to and from the mobile blocks to static code, and in between mobile
blocks: the registers used, the stack frame layout, ...
For source-level forms of diversification and renewability, this requirement of constant binary-

level interfaces can in practice only be achieved when the mobile code blocks correspond to units
of which the compiler cannot alter the binary-level interface at will. This is the case for whole
functions or methods, because compilers are bound to calling conventions. Functions and methods
are often also the “units” in which developers implement functionality, be it protection, library,
or application functionality. So in practice, the limitation to renew only whole functions does not
impose overly strict restrictions on the ability to let the deployed protection components vary over
time. Importantly, renewing whole functions is already supported out-of-the-box by our proposed
(and prototyped) tool flow: It uses the exact same infrastructure that is used to update whole WBC
functions.
Besides the potential to respond to advances in the attacker’s toolbox, this ability to vary

the deployed protection offers two major advantages. First, it can help in reducing the time to
market. Selecting the optimal combination of software protections is a cumbersome, difficult,
time-consuming task. The framework’s capability to vary protections over time allows vendors to
release weaker protected versions early, and to upgrade the protection seamlessly (without the user
being disturbed) after the initial release. Second, the ability to vary the deployed protections over
time can be used to find a better balance between their strength and overhead. A good example
is code integrity verification by means of Remote Attestation (RA) based on code guards. Code
guards are basically hashing functions that compute hashes over the code being executed. With RA,
a server requests such a code guard to be executed on some code region, and checks whether the
received hash value is the expected one. If not, this is a signal that the code has been tampered with.
Different RA and code guard designs come with different degrees of overhead. To keep the overhead
acceptable, all schemes leave some freedom to the attacker to tamper and remain undetected. When
the deployed scheme varies over time, however, as supported by our approach, the attacker has to
take into account all possible schemes to remain undetected for a longer period of time. As already
discussed before, attacks often involve multiple executions of a program, so this period typically
spans multiple executions. During any (tampered) run then, the attacker has to be cautious and
assume no freedom, as if all anti-tampering schemes were being deployed together. At any point in
time, however, only one or a couple of schemes are actually deployed. A regular user thus only
experiences the overhead of a limited number of them. In the ASPIRE project, we experimented
with renewing code guard implementations that, e.g., vary the pseudo-random walk over the code
fragments they hash. By making it unpredictable for an attacker which instructions will be visited,
it suffices to hash only a limited number of instructions during any invocation of a guard.

18 Abrath et al.

Table 1. Features of four evaluation use cases.

use case developer SLoC 3rd-party assets deployed forms of renewability
libraries

DRM library Nagravision 306.2k OpenSSL crypto mobile code,
keys diversified & dynamic (time-limited) WBC (Section 7.3)

software license SafeNet 55.4k tomcrypt, keys, syntactically diversified mobile code (Section 7.1),
manager library Germany tommath code IP diversified instruction set randomization (Section 7.5)
bzip2 app Julian Seward 5.8k syntactically diversified mobile code (Section 7.1)

(open source) - - semantically diversified mobile code (Section 7.2)
evolving code guards (Section 7.6)

WBC crypto Dušan Klinec 6.3k - crypto diversified WBC (Section 7.3)
app (open source) keys

8 EXPERIMENTAL EVALUATION
8.1 Target Platform of Prototype Implementation
Our prototype targets ARMv7 client platforms. Our client hardware consists of several developer
boards, on which we ran Linux 3.15 and Android 4.3+4.4. For Linux, we used a Panda Board
featuring a single-core Texas Instruments OMAP4 processor, an Arndale Board featuring a double-
core Samsung Exynos processor, and a Boundary Devices Nitrogen6X/SABRE Lite Board featuring
a 1GHz quad-core ARM Cortex A9 with 1 GByte of DRAM. The latter was also used for running all
Android benchmark versions, and for running the measurement experiments reported below. On
the server side we set up a VirtualBox VM running a 64-bit Debian Linux, 2 GBytes of RAM and a
Gbit NIC adapter. This VM ran on an Intel Xeon E3-1270 CPU 3.50GHz with 16 GBytes of RAM.
We used GCC 4.8.1, LLVM 3.4, and GNU binutils 2.23 for the client, for which we compiled code
with -Os -march=armv7-a -marm -mfloat-abi=softfp -mfpu=neon -msoft-float. On the server we
used GCC 4.8.1 and binutils 2.23 to build our components. The Mobility Server and Renewability
Manager were compiled with -O3 and -Os -fpic respectively. Our techniques to protect native code
do not depend on features of the mentioned, relatively older versions of system software. Porting
our prototype implementation forward to newer versions requires engineering work, however,
because small patches are needed to the used compilers and assemblers to have them generate
enough symbol information and non-relaxed relocation information for the link-time rewriter.
While that work is certainly doable, porting the whole Android use cases that we introduce below,
including all their Java code that is not a target of our techniques, requires a major effort that we
cannot afford, and that does not have any impact on the presented work or results.

To the best of our knowledge, the presented renewability techniques and all protections supported
by our prototype tools can also be implemented for other platforms such as Apple’s MacOS or
Microsoft Windows, and for other architectures such as 32-bit and 64-bit Intel architectures. We
have experience writing system software for those platforms and architectures, and we are confident
that there are no fundamental obstacles. However, porting the implementation, in particular the
binary-rewriting part and the dependence of certain protections on platform APIs, would require a
huge engineering effort.
Technically, Apple’s iOS appears compatible with the proposed techniques, in the sense that

the OS and related system software offer the necessary functionality. However, policies such as
requiring that all executed code is part of the original binaries distributed via app stores, can
obviously form a hurdle to start deploying the protections. Our research focuses on technical
aspects, policy issues are out of the scope of this paper.

Code Renewability for Native Software Protection 19

8.2 Correctness and Applicability Validation
8.2.1 Industrial Android Use Cases. First, the correctness and applicability of our framework were
validated and evaluated by deploying various forms of renewability on two industrial use cases
that were developed independently by two market leader companies using different development
approaches, software architectures, and build systems. Each use case consists of a shared library of
sufficient complexity to represent real software products. Each of them embeds security-sensitive
assets representative of the assets in the companies’ real products. We chose the code and data
fragments to make mobile and renewable together with the application architects, the application
developers, and security architects from the companies.
The first use case consists of two plug-ins, written in C and C++ at Nagravision S.A., for the

Android media framework and the Android DRM framework. These plug-ins, in the form of
dynamically linked libraries, are necessary to access encrypted movies. A video app programmed
in Java is used as a GUI to watch the videos. This app communicates with the mediaserver and
DRM server processes (i.e., daemons) of Android, informing the daemons which vendor’s plug-ins
they require. On demand, the daemons then load the library plug-ins. Concretely, these servers
are the mediaserver and In our research, we observed several features that make this use case a
perfect stress test. The multi-threaded mediaserver launches and kills threads all the time. The
plug-in libraries are loaded and unloaded frequently, sometimes the unloading being initiated even
before the initialization of the library is finished. As soon as the process crashes, a new instance
is launched. Sometimes this allows the Java video player to continue functioning undisrupted,
sometimes it does not. These forms of behavior stress all client and server components.
The second use case is a software license manager that stores credentials, and controls access

to licensed content and functionality, e.g., through time-limited and key-enabled licenses. This
manager is programmed in C at SafeNet Germany GmbH. It is a dynamically linked library that
includes the JNI interface, and is embedded in an Android app. This native library thus functions as
a license manager for a Java application. In this case, the Java application is relatively simple: It is a
riddle game of which the solutions are protected by the license manager. To test our renewability
support, this use case is also interesting. In particular, the library is loaded into Android’s Dalvik
execution environment, which features multiple threads (such as for the JIT compiler, garbage
collector, ...), and over which we have absolutely no control [10]. A command-line version of the
riddle game, programmed in C, is also available. It uses the same library (except the JNI wrapper).
On top of providing an easier target to debug on our Android developer boards, this command-line
version can also be compiled for Linux. This way, we could also test our implementation on Linux.

Table 1 lists a number of features of the two use cases as an indication of their representativeness
of real-world software. The number of source code lines includes all the mentioned third-party
libraries that are compiled and statically linked into the shared libraries to be protected. Whereas
those linked-in libraries do not contain any assets, they operate on assets such as keys, and their
control flow hence needs to be protected against reverse engineering as well.
Even though no additional protections are listed in Table 1, we did actually combine many

additional non-renewed protections with the listed forms of renewability on the industrial use
cases. This includes anti-debugging [3], remote attestation [58], and code and data obfuscation
techniques [21]. This way, the composability with other protections and correct functioning of the
basic renewability components and of their deployments for specific forms of renewability as listed
in Table 1, were stress-tested extensively.

Our testing effort included the following activities:

• checking logs produced by the tool flow to check that protections were deployed as foreseen,

20 Abrath et al.

• checking the produced code for the presence of the protections and the artifacts resulting
from their deployment,

• running the protected use cases on the developer boards,
• having professional red teams in (or associated with) the aforementioned companies perform
penetration tests for several months on the protected use cases to validate the effectiveness
of the protections against many different attack activities.

The first three activities were performed for all protections supported by our prototype imple-
mentation. By contrast, the professional pen testing was only performed on the non-renewed
versions of the protections. The reason was the ASPIRE project plan, in which the pen testing
part of the validation work package was executed in parallel with the final research development,
which included renewability. The practical results from those pen tests and the broader validation
effort in the project has been published in a public deliverable [26]. The knowledge acquired
during those pen tests regarding attacker activities and processes on programs protected with
the non-renewable versions has been systematized and published as well [17]. The follow-up and
analysis of the pen tests allowed us to pinpoint specific attacker activities that exploit weaknesses
of the non-renewable protections. A concrete example is the iterative refinement of an attacker’s
tracing scripts to iteratively locate the most relevant code in an execution trace. Internally, and
after the ASPIRE project and the development of the renewability had already finished, we then
checked whether the renewable forms of the protections effectively mitigated those pinpointed
attack steps. While we cannot give more concrete details because of confidentiality agreements
with respect to the professional pen tests, we can confirm that the deployed protections indeed
delivered the foreseen mitigations as discussed throughout Section 7.

8.2.2 Smaller Linux Use Cases. The third row of Table 1 lists bzip2, the popular compression
tool. While this open source program does not contain any security-sensitive assets, we used it
to evaluate the correctness of our tool support for two additional applications of renewability,
being syntactically and semantically diversified mobile code blocks on the one hand, and evolving
protections on the other hand.
For the former, we evaluated two semantic source-to-source diversifications: struct field re-

ordering and function parameter reordering. The correctness of the semantic code diversification
transformations was evaluated by compiling and testing the diversified code as it was diversified
with the source-to-source plug-in. The correctness of the whole semantic code diversification setup
was evaluated by deploying the full extended tool flow, including the binary diffing and mobile
block extraction during binary rewriting, on multiple diversified versions. For all of them, the exact
same static binary with mobile blocks extracted was obtained, and that binary was tested to execute
correctly with any compatible version of renewable blocks delivered to it.
Next, we investigated how the degree of semantic diversification (of Section 7.2) influences

the generated binaries and mobile blocks. In our flow, a set of blocks that is mutually compatible
originates from the same diversified instance of the program. Any function that is diversified in
any specific instance needs to be made mobile in all instances in order for them to be compatible
with the same binary. Thus, increasing the number of diversified program instances—from which
the renewable sets of blocks originate—will have an effect on the number of blocks that need
to be made mobile, and on the size of the remaining static binary. To gain some insights into
these effects, we experimented with bzip2 and function parameter reordering. Our tool flow has a
configuration parameter to specify the number of different versions that need to be generated by
diversifying the code of selected software components. We varied this parameter value from 2 to
100. For each evaluated value, we did not select any specific subset of functions for diversification,
but instead allowed the tools to randomly select any subset of functions in the whole program to

Code Renewability for Native Software Protection 21

Table 2. Effects of increasing the number of diversified versions for function parameter reordering

versions # mobile functions total mobile block size
relative to .text size

remaining fraction .text

2 3 8.0% 93.6%
5 8 24.4% 79.8%
10 15 37.5% 68.8%
20 22 53.9% 54.7%
50 31 77.7% 33.1%
100 32 79.5% 31.4%

reorder their parameters. For each of the selected parameter values, we ran a total of 20 differently
random-seeded runs of our framework, and averaged the measurements. We also measured the size
of the .text section of the undiversified bzip2 binary both with and without the extra support code
that is linked into the binary to support the code mobility functionality. This ‘base’ .text section
consists of 94.9KB without support code, and 1116.6KB with; it is thus clear that for this specific
use case the mobility support code exceeds the original application code by an order of magnitude.

Table 2 shows some results. For every number of compatible programs, we measured the averages
of: the number of functions found to differ and thus made mobile, the total size of mobile blocks
proportionate to the base .text section, and the percentage of base .text still present in the binary. It
can be seen that the portion of the binary being made mobile increases with the requested number
of diversified versions, but that there is a limit to this increase. There might be code that will
never be impacted by the specific diversifications used, and thus need never be made mobile (as a
simple example, leaf functions without parameters can never need to be made mobile with this
specific diversification transformation). Next to that, the transformations used for code mobility
both increase the size of the mobile code, and the size of any code still left in the binary invoking
the mobile code. Note that the two fractions add up to more than 100% because making fragments
mobile involves the injection of stubs and other small code snippets in the static binary, and because
the code in mobile blocks is enlarged as it is transformed to make it offset-independent as discussed
in Section 3.

As an instance of an evolving protections, we adapted the existing, initially non-renewable, offline
code guard support in our tool flow. The protection of offline code guards protects the integrity of
the code in two steps. First, invocations of attestation functions are injected into the program at
selected program points. Those functions compute checksums in the form of hashes over parts of
the application code in memory as specified by the developer by means of source code annotations.
The regions are encoded in a data blob that the binary rewriter tool flow component injects into the
protected binary. Secondly, invocations to verifier functions are injected at selected program points.
These verifier functions check whether the computed checksums equal the expected values. If not,
this implies that the code has been tampered with. In that case, the verifiers trigger an appropriate
reaction such as aborting the program or corrupting the program state. The user of the protection
tool flow has to select and provide the reaction code.
We adapted the existing non-renewable prototype to make it renewable. Both attestators and

verifiers can be renewed, allowing us to let the used attestation code evolve over time, e.g., to alter
the order in which instructions in a code region are hashed or the used hashing function, and to
alter the way the correctness of the result is checked. By making the attestators’ and the verifiers’
code renewable, their associated data blob becomes renewable as well. This allows us to let the parts
of the program that are guarded evolve over time. To test the correctness of our implementation,
including the ability to vary the attestators and the verifiers within a single run of the program, we

22 Abrath et al.

configured the renewability policy to force a renewal in between different rounds of compression.
Before different rounds are executed, different parts of the compression routines are attested and
verified, as chosen by the renewability server. By means of the necessary logging functionality in
the injected functions, we have been able to validate that the functionality works correctly and as
intended.

Finally, we tested diversified WBC on a small stand-alone WBC crypto app, of which some details
are listed on the bottom row of Table 1. While we did so mainly to perform overhead measurements
on which we report later, they also contribute to the validation of the prototype implementation
and hence the practicality of the proposed approach.

8.2.3 Conclusion. In summary, the forms of renewability listed in the rightmost column of Table 1
have been validated extensively on four use cases. Combined, our evaluation covers five applications
from Section 7. Most importantly, it covers both mobile and renewed code, and mobile and renewed
data —thus covering all client functionality— as well as most (and definitely a ll c ore) server
functionality. Finally, the evaluation successfully covers Android and Linux platforms, and stand-
alone application executables as well as dynamically linked libraries.

8.3 Performance Overhead
In our previous work, we already analyzed the overhead of basic code mobility when it is deployed
over various wired and wireless networks with different throughputs and l atencies [15]. The
difference between basic code mobility and renewability is the flushing and re-downloading of
code after the initial download. The impact thereof on performance obviously depends on the
frequency with which code needs to be flushed, as well as on the frequency with which it needs to be
downloaded. The flushing frequency is determined by the enforced renewability policy. This hence
varies from one usage scenario to another, and even from one asset to another. The re-download
frequency depends on the flushing frequency, but also on the frequency with which the mobile code
and data is executed and accessed. As an extreme example, a code fragment that is only executed
when a new movie is launched in a media player, will need to be downloaded at most once per
movie, however fast it is flushed after that execution. By contrast, a code fragment that is executed
once or more per frame in the movie will need to be reloaded at essentially the flushing frequency.

The performance overhead of the proposed renewability protection will hence vary wildly from
one scenario to another. We therefore aim for providing the reader a feeling for the range of
overhead to expect, rather than for trying to argue that the overhead is low enough. What is
acceptable and what is not, depends on the usage scenario at hand.

We did not measure the timing of the interactive industrial use cases. We can confirm, however,
that the overhead of the renewability did not significantly impact the overall user experience of
those apps. In the case of the DRM library, downloading mobile code produces a slight additional
delay when a movie is started, but this delay is negligible compared to the delay caused by having
to download enough frames to fill the video buffer. The video playback frame rate was not impacted
by the renewable protections. The renewable functionality of the license manager is downloaded
when the software is launched, and whenever functionality with custom licenses is accessed for
the first time. On those occasions, the downloading of code introduces a (barely noticeable) delay
that is deemed acceptable.

Our first quantitative performance analysis was carried out on the CPU-intensive bzip2 program
(www.bzip2.org). The experiment consisted of measuring different properties of multiple runs of
bzip2 over the controlled, standard input consisting of the SPEC2006 training data (www.spec.org).
Experiments were carried out on three program versions, in which different sets of functions were
made renewable. For the first two versions, we collected profile information with the GNU gprof

www.bzip2.org
www.spec.org

Code Renewability for Native Software Protection 23

Table 3. Client wall-clock execution times and network throughput of renewability on bzip2

mobility refresh time (s) execution time (s) transferred blocks
Mean StDev overhead Mean per sec. kb/s

0% - 279 0.3 - - - -

20%

1 324 1.6 16% 753 2.32 18.38
2 321 1.9 15% 401 1.25 9.94
3 319 1.0 14% 276 0.86 6.93
5 317 1.0 14% 171 0.54 4.34

50%

1 487 1.9 74% 3,885 7.97 12.77
2 475 3.7 70% 1,953 4.11 6.83
3 459 1.1 64% 1,267 2.76 4.63
5 456 2.9 63% 793 1.74 2.90

100%

1 647 4.9 132% 9,818 15.17 30.47
2 591 10.4 112% 5,236 8.86 18.99
3 565 3.3 102% 3,498 6.19 13.29
5 552 4.1 98% 2,127 3.85 8.23

tool [1], and selected hot functions of which the total execution time approximated respectively
20% and 50% of the total execution time of the program. The second set is not a superset of the first
one, but there is some partial overlap. In the third version, all functions in the bzip2 program are
made renewable. This corresponds to 100% of the total program execution time. It is hence clear
that this experiment is not meant to measure realistic overheads. Instead, the experiment serves the
purpose of a sensitivity analysis, demonstrating that the performance overhead can be impacted by
tuning the protection deployment, and that there is a need to do so, because not doing so will often
result in unacceptable amounts of overhead.

With each version, we first set up a baseline by collecting the execution time of a non-protected,
vanilla application. For each of the three renewability percentages, we then ran the program for
different renewability flushing time-outs of 1000, 2000, 3000, and 5000ms. For each mobile block,
600 different versions were generated a priori, using syntactic code diversification techniques [22].
On each download request, the Renewability Server picks one of them randomly.

For each run we sampled the wall-clock execution time, the number of transferred blocks, their
total size in bytes, and the CPU time consumed by the Renewability Manager on the server side.
Each experiment was repeated 20 times to collect data, in the remainder of this section, we discuss
and present averages over those 20 runs.
Table 3 reports the average wall-clock times and the overhead in that regard, as well as the

network overhead in terms of numbers of downloaded blocks and the network throughput. Table 4
reports the CPU time consumption on the server. For reference and comparison, Table 5 presents
the overhead when the different amounts of code in bzip2 are made mobile, but never flushed and
renewed, i.e., when they are downloaded only once. The tables confirm that the overhead is directly
related to both the renewal refresh rate and the hotness of the code fragments being renewed.

Comparing the server overhead to the client execution times, we observe that for this program
and hardware, the server CPU load varies between 0.1% and 0.2% of the client load. Scalability on
the server is hence another factor to be considered when deciding on the use of renewability, on
the fragments to be made renewable, and on the renewal policy enforced by the server. The same
obviously holds for scalability of the network capacity.
A similar experiment with a C++ WBC crypto application was based on Dušan Klinec’s im-

plementation of the Chow WBC scheme without external encodings [18], available at https:

https://github.com/ph4r05/Whitebox-crypto-AES
https://github.com/ph4r05/Whitebox-crypto-AES

24 Abrath et al.

Table 4. Server CPU consumption for bzip2

mobility renewability refresh time (s)

1 2 3 5
20% 405 363 334 300
50% 923 621 544 439
100% 1,006 860 669 565

Table 5. Baseline overhead of code mobility on bzip2

mobility

20% 50% 100%

Client exec time (s)
Mean 282 299 313
StDev 211 135 136

overhead 1.1% 7.1% 12.0%
transferred blocks 4 22 55
blocks/s 0.01 0.07 0.18
network throughput (kb/s) 0.08 0.06 0.18

Table 6. Client CPU consumption and wall-clock execution times of renewable WBC

refresh time (s) user-space CPU time (s) wall-clock exec. time (s)
Mean StDev overhead Mean StDev overhead

baseline 156.1 0.4 - 156.7 0.4 -
1 161.0 0.5 3.1% 179.0 0.6 14.2%
2 158.8 0.4 1.7% 165.6 0.4 5.6%
3 157.4 0.6 0.8% 162.5 0.6 3.7%
4 156.9 0.5 0.5% 160.6 0.5 2.5%
5 156.3 0.6 0.1% 159.8 0.5 2.0%

Table 7. Network throughput of renewable WBC

refresh time (s) transferred blocks transferred MBs
Mean StDev Mean StDev

1 179.8 0.7 205.1 0.8
2 83.4 0.5 95.1 0.8
3 54.9 0.4 62.6 0.4
4 40.9 0.3 46.7 0.4
5 32.5 0.5 37.0 0.6

//github.com/ph4r05/Whitebox-crypto-AES. The decryption primitive and its embedded key are
implemented by means of large tables that total 1.14MB. Renewing this routine and its tables to
renew the decryption key hence involves the downloading of a mobile block of about 1.14MB. This
is significantly larger than the code blocks that were downloaded in the bzip2 experiments.

Table 6 reports client user-land CPU consumption times and client wall-clock execution times of
the baseline version without renewability, and of the renewable version at different refresh rates.
The differences between the overheads in both measurements is considerable. This is of course
due to the fact that the client side spends a significant amount of time waiting for the large mobile
blocks to arrive. However, during that wait, no CPU resources are consumed. Still, even for the

.

https://github.com/ph4r05/Whitebox-crypto-AES
https://github.com/ph4r05/Whitebox-crypto-AES

Code Renewability for Native Software Protection 25

version that only refreshes the routine and its embedded key every 5 seconds, the user-land CPU
time increases significantly. The reason is that the Downloader and Binder components take up
some computation time, and that the code transformations that are necessary to implement code
mobility and renewability—as detailed in our previous work [15]—also have a small, but significant
effect on performance.

Table 7 shows how the network throughput scales with the refresh rates. The number of trans-
ferred blocks, which equals the number of refreshes (plus 1) scales super-linearly with the refresh
frequency because the execution time of the benchmark increases with higher refresh frequencies.
For this form of renewability, which inherently involves large mobile blocks, the measurements
confirm that network scalability is an important issue to consider.

9 RELATED WORK
Our framework combines and extends concepts from network-based protections, and software
diversity. Network-based software protection techniques leverage software updates and trusted
network services. The updates may be implemented for the functional part of the program, and for
the protection techniques used to protect it [22]. Both Collberg et al. [20] and Falcarin et al. [30]
proposed the continuous replacement of binary code. Collberg et al. make use of CIL (Common
Intermediate Language) to generate diversified code. They support both syntactic and semantic
diversity, using what they call Protocol-Preserving and Non-Protocol-Preserving Transformation
Primitives, respectively. They only diversify application code in order to overwhelm an attacker
with new code versions to increase the required attacked effort. They consider no integration
with other protections or making other protections renewable. Furthermore, no code was made
available. Falcarin et al. only pitched the idea of making existing application code mobile as a form
of obfuscation and proposed binary rewriting as an implementation option, but they provided no
experimental validation or prototype implementations, nor did they consider composability or
renewability of other protections. Contrary to the work of Collberg et al. [20], our framework works
by directly replacing binary code, giving it more freedom in terms of granularity and composability
with other techniques. Contrary to both, our framework not only makes it possible to renew
application code, it can also renew entire protection techniques, in an automated, specialized,
manner. Contrary to both, our framework has also been validated by industrial experts [26].
Previous Java work implemented dynamic replacement of remote attestation protection code

downloaded by a trusted server, using extended Java Virtual Machines [50]. Other techniques such
as remote attestation extend code guards with a network server. The Pioneer [51] system relied on
a verification function running on the client as an OS primitive, and an attestation server. Garay
et al. [33] presented an approach where a trusted challenger sends a challenge to the potentially
corrupted responder. The challenge is an executable program that can execute any function on the
responder, which must compute the challenge fast enough to prove its integrity.
In literature [24, 32, 40], software diversity relied on random generation of diversified copies,

starting from the same source code, extending the idea of compiler-guided code variance [31]. A
survey [44] compares the different approaches for software diversity in terms of performance and
security, and recently software diversity has become practical due to cloud computing enabling the
computational power to perform massive diversification [44]. Past software diversity approaches
have been based on some form of obfuscation [19], load-time binary transformation [42], virtual-
ization obfuscation based on customized virtual machines [37], or OS randomization [63]. Other
approaches rely on binary transformation based on a random seed [57], or multi-compilers and
cloud computing [32] to create a unique diverse binary version of every program, and they apply
such diversification for mobile apps [40]. The XIFER framework [24] randomly diversifies Android
apps at load time by means of a binary rewriter. Both spatial and temporal software diversity

26 Abrath et al.

has been proposed as a solution to a wide range of problems: code randomization has been used
to defend against code-reuse attacks [52], return-oriented programming attacks [36], and code
injection attacks [60]. More fine-grained forms of diversification have been proposed to raise the bar
even further [34, 43], including for code dynamically generated with JIT compilers [38]. Dynamic
temporal diversity has been proposed to mitigate timing side channel attacks [23]. Diversification
can also prevent collusion attacks to identify vulnerabilities [22].

With the work presented in this paper, we do not aim for pushing the state-of-the-art in terms of
code diversification itself. We simply leverage the existing state-of-the-art in diversity techniques
in support of renewability. For example, the syntactic diversification discussed in Section 7.1 reuses
the diversification techniques already deployed to mitigate collusion attacks in [22]. For WBC, e.g.,
any domain-specific technique to generated diversified instances can be used, as that choice is
completely orthogonal to the rest of our framework.
To the best of our knowledge, existing MATE software protection tools available to (academic)

researchers, including Tigress, OLLVM, Sandmark, and ProGuard, support none of the forms of
renewability we discussed in Section 7. The three latter only support static obfuscation. While
Tigress offers rather strong diversification in combination with static and dynamic obfuscations,
it is limited to compile-time diversification: Once an obfuscated binary is distributed, it is fixed.
The obfuscated binary may generate code itself by means of a just-in-time (JIT) compiler, and each
distributed binary may generate different JIT-ed code, but the code JIT-ed by a specific distributed
binary is never renewed or diversified.

Compared to the discussed work, our renewability framework provides a foundation to combine,
compose, extend, and hence fortify several existing defenses (beyond mere obfuscation). The
tool flow supports combinations and compositions, meaning that multiple protections can be
deployed together on the same program or even on the same code fragment. This follows in part
from its conception as part of the ASPIRE Compiler Tool Chain, the software protection tool chain
developed in the ASPIRE project as automated support for a wide range of software protections. Our
framework is fully compliant with the ASPIRE software protection reference architecture [27, 62].
As demonstrated, our framework is applicable to native code, and is hence not limited to code

distributed in higher-level, more symbolic (and hence easier to attack) formats such as Java bytecode.
The granularity of the renewability is furthermore not limited to coarse code fragments such as
whole functions. Much smaller (security-sensitive) code regions can instead be made renewable.

As already discussed in Sections 2 and 7, the framework and concrete instantiations of its capa-
bilities can mitigate concrete attack paths. Recently, Ceccato et al. reported results of a qualitative
analysis of how professional hackers as well as amateurs understand protected code while perform-
ing attack steps [17]. The resulting taxonomy of concepts used by the hackers to describe their
attacks towards code understanding, and the inferred models of their activities and their reasoning,
provide further insights into how the proposed renewability framework can impede certain attack
paths and attack strategies. Several activities are impacted by renewability as supported by our
architecture and tool flow, including but not limited to: static analysis, tracing, debugging, statistical
analysis, assessing the effort, building of workarounds, undoing of protections, overcoming of pro-
tections, formulating hypotheses, and confirmation of hypotheses. The latter two play an important
role in real-world attacks. They depend to a large degree on repeatability of attack activities, which
is directly addresses by the forms of renewability our framework supports.
There are plenty of commercial protection tools available on the market, such as those from

Arxan, Irdeto, and Guardsquare. Those are notably missing in the above discussion. The reason
is that the commercial companies are very secretive. For example, the academics authors of this
paper cannot get access to accurate enough documentation (i.e., beyond the level of marketing info)
to allow scientifically solid comparisons. What we do know is that some commercial protection

,

Code Renewability for Native Software Protection 27

tool suites deploy source-level and binary-level protections. Furthermore, their deployment of
all kinds of obfuscations is syntactically diversified, in the sense that the static code generated
for a protection looks different every time to mitigate the simplest attack vectors such as pattern
matching. In that regard our tool suite is not novel. We don’t feel confident, however, writing
about more specific code mobility or more dynamic renewability capabilities or features of the
commercial offerings.
Whether their deployment is supported by tools or done manually in an ad-hoc manner is

unclear because of the already mentioned secrecy, but do we know of at least three forms of
renewability that are used commercially. The first one is the evolution of license key checks as
discussed in Section 7.6. To the best of our knowledge, that is deployed only in a static manner, i.e.,
with extended checks embedded statically in consecutive software released. The second form is an
ad-hoc instantiation of the aforementioned idea by Collberg et al. to overwhelm attackers with new
code version [20]. In some live video distribution schemes (e.g., via satellite pay TV) decompression
and decryption code is sent along with the video streams and is renewed frequently, i.e., up to
multiple times per second. As the value of live content drops really quickly, such a protection
implies that in order to be successful, attackers must crack each version within seconds to minutes,
and they must do so for tens to hundreds of versions in parallel. In practice, this proves to provide
strong protection. This form of protection is supported by our framework as discussed in Section 7.3,
albeit that the renewed code is not embedded in the streamed data in our framework. Which form
provides the best protection is an open research question at the moment. A third commercially used
form is VM-based renewability in which, e.g., Lua scripts that check the integrity of the installation
on a player’s computer to prevent cheating are renewed on a regular basis in online games.

10 AVAILABILITY
The ASPIRE Compiler Tool Chain is available as open-source at and via https://github.com/aspire-
fp7/framework. This includes the link-time rewriter, the compiler patches, the mobility and renewa-
bility server and client components, scripts to invoke the whole tool flow and to handle source-code
annotations, and extensive documentation that is available at https://aspire-fp7.eu/. The open
sourced code includes many concrete protections, such as remote attestation, anti-debugging by
means of self-debugging, control flow obfuscation, code guards, anti-callback stack checks, etc. It
excludes some protections that were researched in the ASPIRE project but that were only developed
in proprietary plug-in prototypes, such as the white-box cryptography that was deployed in the
industrial Android use cases, data obfuscation, and instruction set virtualization. The Android use
cases are not available either, due to their inclusion of security-sensitive assets from the partnering
companies. The bzip2 benchmark and the smaller white-box cryptography benchmark we deployed
are available however. About 4 hours of video demonstrations of the whole ASPIRE tool chain,
including the renewability framework, have been published in the ASPIRE project YouTube channel
at https://goo.gl/pfESbK.

By making this tool chain available, we aim to provide useful infrastructure for future research.
In the domain of software protection, there is a large discrepancy between what companies do and
have available in secret, and what academics have available to experiment with in public. The lack
of defenders to evaluate how new contributions compose with the existing state-of-the-art hampers
progress. By providing research infrastructure, we hope the software protection community can
catch up with, e.g., the domain of cryptography, where there is a constant back and forth of attacks
and defenses. This is absolutely necessary, as software protection is bound to remain part of the
never-ending arms race between defenders and attackers.

https://github.com/aspire-fp7/framework
https://github.com/aspire-fp7/framework
https://aspire-fp7.eu/
https://goo.gl/pfESbK

28 Abrath et al.

11 CONCLUSIONS
This paper presented the ASPIRE framework, architecture and tool flow support for native code
renewability. This framework supports several forms of renewability, in which renewed and
diversified code and data, belonging to either the original application or to linked-in protection
components, is delivered from a secure server to a client application on demand. This results in
frequent changes to the software components when they are under attack, thus making dynamic
attacks harder. Several applications of the renewability framework have been discussed, some of
which extend existing protections, and some of which enforce existing protections. The prototype
implementation was evaluated successfully on a number of use cases, including complex libraries
representative for real-world, industrial use cases. Most of the prototype implementations are
available online as open source.

REFERENCES
[1] [n.d.]. GNU gprof. https://sourceware.org/binutils/docs/gprof/.
[2] [n.d.]. The WhibOx Contest, An ECRYPT White-Box Cryptography Competition. https://whibox.cr.yp.to/.
[3] Bert Abrath et al. 2016. Tightly-coupled self-debugging software protection. In Proc. 6th Workshop on Software Security,

Protection, and Reverse Engineering. 7:1–7:10.
[4] ARM. 2005–2009. ARM Security Technology – Building a Secure System using TrustZone® Technology. (2005–2009).

http://infocenter.arm.com.
[5] Cyrille Artho. 2011. Iterative delta debugging. Int’l Journal on Software Tools for Technology Transfer (STTT) 13, 3

(2011), 223–246.
[6] Arxan. [n.d.]. State of Application Security. On-line at https://www.arxan.com/resources/state-of-application-

security/.
[7] Cataldo Basile et al. 2016. ASPIRE Framework Report. Deliverable D5.11 v1.0. ASPIRE.
[8] Olivier Billet and Henri Gilbert. 2003. A Traceable Block Cipher. In Advances in Cryptology - ASIACRYPT. 331–346.
[9] binutils 2016. Documentation for binutils 2.27.
[10] Dan Bornstein. 2008. Dalvik VM internals. In Google I/O Developer Conf., Vol. 23. 17–30.
[11] Ferdinand Brasser et al. 2017. Software Grand Exposure: SGX Cache Attacks Are Practical. In USENIX WOOT.
[12] Brecht Wyseur. [n.d.]. Let’s get real! We need WBC and Io. WhibOx 2016, workshop on White-Box Cryptography and

Obfuscation.
[13] Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. [n.d.]. White Box Cryptography: Another Attempt. Cryptol-

ogy ePrint Archive, Report 2006/468.
[14] BSA Global Software Piracy Survey [n.d.]. BSA Global Software Piracy Survey. On-line at https://gss.bsa.org/.
[15] Alessandro Cabutto et al. 2015. Software Protection with Code Mobility. In ACM Workshop on Moving Target Defense.

95–103.
[16] Mariano Ceccato et al. 2007. Barrier Slicing for Remote Software Trusting. In Int’l Working Conf. on Source Code

Analysis and Manipulation. 27–36.
[17] Mariano Ceccato et al. 2019. Understanding the behaviour of hackers while performing attack tasks in a professional

setting and in a public challenge. Empirical Software Engineering 24, 1 (2019), 240–286.
[18] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. 2002. White-Box Cryptography and an AES

Implementation.. In Proc. 9th Int’l Workshop on Selected Areas in Cryptography. 250–270.
[19] Frederick B Cohen. 1993. Operating system protection through program evolution. Computers & Security 12, 6 (1993),

565–584.
[20] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. 2012. Distributed application tamper detection via

continuous software updates. In Proc. 28th Annual Computer Security Applications Conf. 319–328.
[21] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for

Software Protection. Addison-Wesley Professional.
[22] Bart Coppens et al. 2013. Protecting your software updates. IEEE Security & Privacy 11, 2 (2013), 47–54.
[23] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2015. Thwarting Cache Side-

Channel Attacks Through Dynamic Software Diversity.. In NDSS. 8–11.
[24] Lucas Davi et al. 2012. XIFER: A Software Diversity Tool Against Code-Reuse Attacks. In 4th ACM Int’l Workshop on

Wireless of the Students, by the Students, for the Students.
[25] Bjorn De Sutter et al. 2001. Combining Global Code and Data Compaction. In ACM SIGPLAN workshop on Languages,

compilers and tools for embedded systems. 29–38.

https://sourceware.org/binutils/docs/gprof/
https://whibox.cr.yp.to/
http://infocenter.arm.com
https://www.arxan.com/resources/state-of-application-security/
https://www.arxan.com/resources/state-of-application-security/
https://gss.bsa.org/

Code Renewability for Native Software Protection 29

[26] Bjorn De Sutter et al. 2016. ASPIRE Validation Report. Deliverable D1.06. ASPIRE EU FP7 project. https://aspire-fp7.eu.
[27] Bjorn De Sutter et al. 2016. A reference architecture for software protection. In 13th Working IEEE/IFIP Conf. on Software

Architecture. 291–294.
[28] Saumya Debray, Robert Muth, and Matthew Weippert. 1998. Alias Analysis of Executable Code. In Proc. of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 12–24.
[29] Paolo Falcarin, Christian S. Collberg, Mikhail J. Atallah, and Mariusz H. Jakubowski. 2011. Guest Editors’ Introduction:

Software Protection. IEEE Software 28, 2 (2011), 24–27. https://doi.org/10.1109/MS.2011.34
[30] Paolo Falcarin, Stefano Di Carlo, Alessandro Cabutto, Nicola Garazzino, and Davide Barberis. 2011. Exploiting code

mobility for dynamic binary obfuscation. In IEEE World Congress on Internet Security. 114–120.
[31] S. Forrest, A. Somayaji, and D. H. Ackley. 1997. Building diverse computer systems. In Operating Systems, 1997., The

Sixth Workshop on Hot Topics in. 67–72. https://doi.org/10.1109/HOTOS.1997.595185
[32] Michael Franz. 2010. E unibus pluram: massive-scale software diversity as a defense mechanism. In Proc. Workshop on

New security paradigms. 7–16.
[33] Juan A Garay and Lorenz Huelsbergen. 2006. Software integrity protection using timed executable agents. In Proc.

ACM Symp. on Information, computer and communications security. 189–200.
[34] Cristiano Giuffrida et al. 2012. Enhanced Operating System Security Through Efficient and Fine-grained Address Space

Randomization.. In USENIX Security Symposium. 475–490.
[35] Y. X. Gu et al. 2011. Point/Counterpoint. IEEE Software 28, 2 (March/April 2011), 56–59.
[36] Aditi Gupta, Sam Kerr, Michael S. Kirkpatrick, and Elisa Bertino. 2013. Marlin: a Fine Grained Randomization Approach

to Defend against ROP Attacks. In 7th Int’l Conf. on Network and System Security. 293–306.
[37] David A Holland, Ada T Lim, and Margo I Seltzer. 2005. An architecture a day keeps the hacker away. ACM SIGARCH

Computer Architecture News 33, 1 (2005), 34–41.
[38] Andrei Homescu et al. 2013. Librando: transparent code randomization for just-in-time compilers. In ACM Conf. on

Computer & communications security. 993–1004.
[39] Internet Engineering Task Force (IETF). 2011. http://tools.ietf.org/html/rfc6455.
[40] Todd Jackson et al. 2011. Compiler-generated software diversity. In Moving Target Defense. 77–98.
[41] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-LLVM–Software Protection for the

Masses. In Software Protection (SPRO), 2015 IEEE/ACM 1st Int’l Workshop on. IEEE, 3–9.
[42] James E Just and Mark Cornwell. 2004. Review and analysis of synthetic diversity for breaking monocultures. In Proc.

of the 2004 ACM workshop on Rapid malcode. ACM, 23–32.
[43] Chongkyung Kil et al. 2006. Address space layout permutation (ASLP): Towards fine-grained randomization of

commodity software. In IEEE Computer Security Applications Conf. 339–348.
[44] P. Larsen et al. 2014. Security through Diversity: Are We There Yet? IEEE Security & Privacy 12, 2 (2014), 28–35.

https://doi.org/10.1109/MSP.2013.129
[45] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK: Automated Software Diversity. In Proc.

IEEE Symposium on Security and Privacy. IEEE Computer Society, 276–291.
[46] Sangho Lee et al. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. In USENIX

Security Symposium. 557–574.
[47] multicompiler [n.d.]. The UCI Multicompiler. https://github.com/securesystemslab/multicompiler.
[48] Oreans Technologies. [n.d.]. Code virtualizer: Total obfuscation against reverse engineering. www.oreans.com/

codevirtualizer.php.
[49] Oreans Technologies. [n.d.]. Themida: Advanced windows software protection system. www.oreans.com/themida.php.
[50] Riccardo Scandariato, Yoram Ofek, Paolo Falcarin, and Mario Baldi. 2008. Application-oriented trust in distributed

computing. In 3rd Int’l Conf. on Availability, Reliability and Security (ARES’08). 434–439.
[51] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert Doom, and Pradeep Khosla. 2007. Pioneer: verifying code integrity

and enforcing untampered code execution on legacy systems. Malware Detection (2007), 253–289.
[52] Eitaro Shioji et al. 2012. Code Shredding: Byte-granular Randomization of Program Layout for Detecting Code-reuse

Attacks. In Proc. 28th Annual Computer Security Applications Conf. 309–318.
[53] StrongBit Technology. [n.d.]. EXECryptor âĂŞ bulletproof software protection. www.strongbit.com/execryptor.asp.
[54] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force vulnerability discovery. Pearson Education.
[55] Symantec. [n.d.]. Internet Security Threat Report. On-line at www.symantec.com/security-center/threat-report.
[56] M. van der Ende, M. Hageraats, J. Poort, J. Quintais, and A. Yagafarova. 2018. Global Online Piracy Study 2018. On-line

at https://www.ivir.nl/projects/global-online-piracy-study/.
[57] Ludo Van Put et al. 2005. Diablo: a reliable, retargetable and extensible link-time rewriting framework. In Proc. Int’l

Symp. on Signal Processing and Information Technology. 7–12.
[58] Alessio Viticchié, Cataldo Basile, Andrea Avancini, Mariano Ceccato, Bert Abrath, and Bart Coppens. 2016. Reactive

Attestation: Automatic Detection and Reaction to Software Tampering Attacks. In Proc. ACM Workshop on Software

https://aspire-fp7.eu
https://doi.org/10.1109/MS.2011.34
https://doi.org/10.1109/HOTOS.1997.595185
https://doi.org/10.1109/MSP.2013.129
www.oreans.com/codevirtualizer.php
www.oreans.com/codevirtualizer.php
www.oreans.com/themida.php
www.strongbit.com/execryptor.asp
www.symantec.com/security-center/threat-report
https://www.ivir.nl/projects/global-online-piracy-study/

30 Abrath et al.

PROtection. 73–84.
[59] VMProtect Software. [n.d.]. VMProtect âĂŞ New-generation software protection. www.vmprotect.ru.
[60] D. Williams et al. 2009. Security through Diversity: Leveraging Virtual Machine Technology. IEEE Security & Privacy

7, 1 (Jan 2009), 26–33. https://doi.org/10.1109/MSP.2009.18
[61] Brecht Wyseur. 2009. White-Box Cryptography. Ph.D. Dissertation. Katholieke Universiteit Leuven.
[62] Brecht Wyseur, Bjorn De Sutter, et al. 2016. ASPIRE Reference Architecture. Deliverable D1.04 v2.1. ASPIRE.
[63] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K Iyer. 2003. Transparent runtime randomization for security. In

Reliable Distributed Systems, 2003. Proc. 22nd Int. Symposium on. IEEE, 260–269.
[64] Dionisio Zumerle and Manjunath Bhat. 2017. Gartner: Market Guide for Application Shielding.

www.vmprotect.ru
https://doi.org/10.1109/MSP.2009.18

	Abstract
	1 Introduction and Motivation
	2 Attack Model
	3 The ASPIRE Renewability Architecture
	4 Integrating Renewability into Existing Applications
	4.1 Renewability Policies
	4.2 Renewability Communication Design

	5 Mobile Data Blocks
	6 Tool Flow Support
	6.1 Existing Static Protections and Mobility Tool Flow
	6.2 Renewable Code Generator Generation
	6.3 Renewable Code Generation
	6.4 Discussion

	7 Mitigations Against Concrete Attacks
	7.1 Syntactically Diversified Mobile Code
	7.2 Semantically Diversified Mobile Code
	7.3 Dynamic and Time-Limited White-Box Cryptography
	7.4 Diversified Static-To-Procedural Conversion
	7.5 Diversified Instruction Set Randomization
	7.6 Evolving Protections

	8 Experimental Evaluation
	8.1 Target Platform of Prototype Implementation
	8.2 Correctness and Applicability Validation
	8.3 Performance Overhead

	9 Related Work
	10 Availability
	11 Conclusions
	References

