
KATHOLIEKE
UNlVERSITEIT

LEUVEN

DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 9938
A HYBRID GENETIC ALGORITHM FOR SOLVING

A LAYOUT PROBLEM IN THE FASHION
INDUSTRY

by
J. MARTENS

F. PUT
S. VIAENE

J. VAN BRECHT

0/1999/2376/38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304830?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Hybrid Genetic Algorithm for Solving a Layout Problem in

the Fashion Industry

Martens J. *,
Put F., Viaene S. & Van Brecht J.

Catholic University of Leuven

Faculty of Economics and Applied Economics

Information Systems Group

• Corresponding author, Jurgen,Martens@econ,kuleuven,ac,be

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

A Hybrid Genetic Algorithm for Solving a Layout

Problem in the Fashion Industry

Abstract: As of this writing, many success stories exist yet of powerful genetic algorithms (GAs) in the field of

constraint optimisation. In this paper, a hybrid, intelligent genetic algorithm will be developed for solving a

cutting layout problem in the Belgian fashion industry. In an initial section, an existing LP formulation of the

cutting problem is briefly summarised and is used in further paragraphs as the core design of our GA.

Through an initial attempt of rendering the algorithm as universal as possible, it was conceived a threefold

genetic enhancement had to be carried out that reduces the size of the active solution space. The GA is

therefore rebuilt using intelligent genetic operators, carrying out a local optimisation and applying a

heuristic feasibility operator. Powerful computational results are achieved for a variety of problem cases that

outperform any existing LP model yet developed.

Keywords: Genetic Algorithms, Layout Problem, Constraint Handling

Research Report 1999 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Introduction

1. Martens et al.

As of this writing, genetic algorithms (GAs) have demonstrated their potential for a large set of hard,

intractable optimisation problems. Recently, there have been successful research attempts to apply GAs for

solving a wide number of well-known constraint satisfaction problems, ego the job scheduling [4] and the

transportation problem [9], the travelling salesman dilemma [22] and the knapsack [2,18] and the set covering

problem [1,3].

In this paper, we propose a genetic algorithm to solve a cutting layout problem in the Belgian clothing

industry. For several years now, exclusive clothing manufacturers are coping with the problem of working out

an optimal cutting pattern for expensive articles where operating costs and production excess should be as low

as possible. The computational complexity that is inherently associated with this problem has motivated yet

many researchers to come up with better, more efficient linear programming formulations that produce both

optimal and near optimal solutions in an acceptable boundary of time [6,7]. However, when problem

dimensions increase, these techniques tend to slow down considerably and take a significant longer amount of

time to produce acceptable cutting proposals. As will be demonstrated in the following paragraphs, a genetic

algorithm approach yields solutions faster than any LP model yet developed and is able to render excellent

proposals almost instantaneously.

The paper is organised as follows. In section 2, a more detailed description of the layout problem is given,

together with a condensed outline of the LP model as it will be used in our GA. In section 3, an initial GA is

developed, giving special attention to the encoding mechanism applied and the layout of the fitness function.

The core features of our GA are primarily developed in light of universal genetic algorithm theory, as can be

found in many general GA textbooks [12,5,8]. Due to the poor quality of preliminary results achieved, a

threefold genetic enhancement is carried out in section 4 that effectively shrinks the active operating universe

of the genetic algorithm. Our initial GA is improved by creating intelligent genetic operators, by executing a

level of local optimisation and by implementing a heuristic demand feasibility operator. Section 5 contains

then our major research results and compares the performance of the GA with other techniques. The paper is

concluded by summarising the most important topics and by giving some ideas for future research.

2. The Layout Problem

2.1. Problem description

For a particular clothing article that is available in various sizes, the layout problem boils down to finding

a collection of cutting table layouts that allow to satisfy demand with as little article excess as possible. In

essence, setting up a cutting table corresponds to placing a number of stencils on the table where every stencil

consists of several layers of fabric. A sequence of stencils is called a pattern and every stencil in a pattern is

Research Report 1999 2 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

associated with a particular size. Cutting equipment specifications make the number of stencils per pattern

limited and enforce all stencils within a specific pattern to contain an equal number of fabric layers.

The figure below pictures a possible pattern composition, embodying 3 stencils of 2 different sizes, where

the number of layers equals 5.

Figure 1: Possible layout of a pattern

Preparing a cutting table is a very time consuming and labour intensive process that makes the number of

patterns should be kept at a minimum level. Since production costs are generally much more sensitive to

adding additional patterns than to overproduction, the number of patterns is decided upon analytically by

setting the number equal to the minimum number of patterns that are needed to fulfil demand.

Table 1 illustrates a typical cutting problem where demand is available for 5 different sizes (I pi), a

maximum of 3 cutting patterns may be used (I R I) that can consist of a sequence of 4 stencils (b), no more

than 35 layers of fabric high (H). The number of necessary patterns to produce sufficient articles of each size

was set to its lower bound value of 3.

Sizes

Height 38 40 42 44 46

Pattern 1 27 2 2 0 0 0

Pattern 2 31 0 1 2 1 0

Pattern 3 29 0 0 1 1 1

Production 54 85 91 60 29

Demand 54 84 91 60 29

Excess 0 1 0 0 0

Table 1: Cutting proposal, demands and excess production

2.2. LP formulation

As can be read in [7], a straightforward formulation of the layout problem leads to a general integer, non-

linear programming problem. The authors attempt to render the model solvable as a general integer linear

program through a set of discretizations and linearizations of the variables used. Also, a network-knapsack

approach to the cutting problem is advocated where the number of stencils in a pattern is decided upon by

going through the various sizes sequentially. After an extensive derivation, the authors have come up with the

Research Report 1999 3 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Martens et at.

LP fonnulation below. where the variables Xijrs and Zj constitute the core variables of the problem at hand. In

the model. the variable xijrn will equal 1 if one puts s stencils of size i in pattern j when r stencil places are still

free. The variable Zj on the other hand represents the number of clothing layers in pattern j. The authors

formulate the objective function of the cutting stock problem such that the total production of articles is

minimised while satisfying a collection of demand. network and height constraints. The figure below depicts

the final LP model (the variable Viik = Zj when k stencils of size i are put on the table in patternj. 0 otherwise):

Min L, L, L,kvijk
ieP jeR keB

subject to:

L Lkvijk ;::: d i . 'Iii E P
jeR keB

{demand constraints}

Yj = LXljbs • 'lij E R
seB

r

Xljb(b.r) = LX2jrs • 'lij E R. 'lir E B
s=O

b-r r

LXij(r+s)s = LX(i+l)jrs • 'lij E R. 'lir E B.
s=O s=o

'Iii E P \ {1.IPI}
{ network constraints}

LVijk =Zj • 'Iii E p. 'lij E R. 'lik E B
keB

b

Vijk :'> HL,Xijrk • 'Iii E p. 'lij E R. 'lik E B
r=k

Zj:'>HYj .'lij E R

{height constraints}

Vijk ;:::0. Xijrs E{O.I}. Yj E{O.I}.

Zj E {0.1.2.3 •... }. 'lij E R. 'Iii E p.

'lik.r.s E B. s:'>r

Figure 2: Objective function and demand. network and height constraints for the LP model

The demand constraints in the LP model assure that the final cutting proposal will meet the available

demand data of the various sizes. The network constraints on the other hand force us to allocate sizes to a

particular pattern in a sequential way. taking into account the amount of free space left. The network is

Research Report 1999 4 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

processed starting with size I and ending with size 1 P I. Finally, height constraints take care of the fact that

the number of clothing layers in a pattern is not exceeding its upper limit H.

3. An Initial Genetic Algorithm Approach

3.1. Genetic algorithms

Genetic algorithms were invented to mimic some of the processes observed in natural evolution when

solving difficult problems in a wide spectrum of scientific domains. The basic features of this evolutionary

process made Holland [12] in the early 70's believe that, when appropriately incorporated in a computer

algorithm, they might yield a technique for solving problems in a way that nature has done in the past.

The process of evolution operates on so-called chromosomes or genetic strings in a population. These

chromosomes represent solution candidates for a specific problem at hand while their fitness indicates the

valuation of their associated solution. During the execution time of a genetic algorithm, a primitive population

of chromosomes will evolve by generating offspring and applying simple genetic operators such as crossover

and mutation. The basic idea of the algorithm boils down to Darwin's concept of survival of the fittest:

elementary DNA structures will start to dominate the population and will in the long run constitute

indispensable genetic schemes to survive. Chromosomes lacking these fundamental DNA patterns have a low

chance of survival and will eventually be overruled by better fitting competitors. It is exactly the disclosure of

those vital DNA densities (called schemata) at which a genetic algorithm is aimed. The more these schemata

are spread throughout the population, the more the algorithm will have converged to a set of high quality

solutions. It is common to retain the best fitting chromosome at that point in time as a resolution to the

problem at hand.

3.2. Encoding of cutting proposals

Careful examination of the LP formulation of the cutting problem reveals that the variables xijrs and Zj

suffice to constitute feasible cutting proposals and to cover the entire solution space. Moreover, the 0/1 nature

of the xijrs variables makes them very suitable to be encoded in a genetic string without further transformation.

In order to get a full binary representation of an LP solution, the number of fabric layers for a particular

pattern was translated into a binary notation.

Research Report 1999 5 Information Systems Group

A Hybrid Genetic A 19orithm for Solving a Layout Problem
in the Fashion Industry

Figure 3: Layout of a genetic string when I p I =3, I R I =2 and b=2

1. Martens et al.

Figure 3 visualises the above encoding strategy for a cutting problem with two patterns, three sizes and a

maximum number of stencils on the cutting table of two. Reading the first pattern from the left to the right

gives us the following values for the variables Xij" and Zj:

x1l22 = x1l21 = 0

x ll20 = I
X2122 = 0

X2121 = 1

X2120 = 0

X2111 = X21l0 = X2100 = 0

X3122 = X3121 = x3\20 = 0

X 3111 = 1

X3\lO = X3100 = 0

ZI = 10

Table 2: Decoding of genetic material in Figure 3

A potential drawback of the above encoding method lies in the fact the application of genetic operators to

a particular chromosome may easily introduce infeasibility or solutions that violate the knapsack constraints.

Therefore, during early phases of research, an alternative genetic algorithm was developed that operates on

the general non-linear integer problem formulation (full integer encoding) avoiding the introduction of a

network-knapsack approach. Although this full integer representation severely reduced the magnitude and the

complexity of the active genetic universe, feasibility could still not always be guaranteed after applying

crossover and mutation operators. Moreover, the heuristic, "ad hoc" peculiarity of the algorithm made it

extremely difficult to defend the resulting technique as a genuine, authentic application of genetic algorithm

theory.

3.3. Algorithm design

3.3.1. Fitness function

Since a population of cutting proposals may consist of a mixture of feasible and infeasible solutions,

careful design of the fitness function is imminent. In the literature, many approaches have yet been proposed

to handle constraint breaching solutions in a penalty function [13,17,20,16]. It was believed for our GA to

Research Report 1999 6 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

J. Martells et al.

work properly, penalties for violating problem constraints should be assigned in a way that no feasible

chromosome can ever be outperformed by an infeasible cutting proposal. In light of this rationale, the

following fitness/penalty (Pt) function was developed:

fu = 2: MaX{d i - 2:(2: ±s*xijrs *Zj],o}*pu (3)
iEP jER fEB(i) ,=0

fh = L,Max{zj-H,O}*Ph (4)
jeR

The fitness function in (1) is composed of four different sub-functions: a penalty function for violating

network constraints (fn) , demand constraints (fu) and height boundaries (fh) and a penalty function for every

article produced in excess of demand (fo)' Feasible solutions will have a single penalty term (fo)' while

infeasible solutions will be penalised both for constraint violation and overproduction. In order to get a clear

boundary between feasible and infeasible solutions, the penalty factors Pn' Pu and Ph have to be greater than

the total maximum demand overshoot penalty (fo) a feasible solution can ever incur, which is given by

(b H IRI- ~di). Hence, following the so-called minimum-penalty rule [14], penalty factors are established

causing minimal gap between feasible and infeasible solutions:

3.3.2. Crossover & mutation operators

In light of classic genetic algorithm theory, we constructed both standard one- and two-point crossover

functions as well as a mutation operator. Parents can be selected in our algorithm on a pure random basis or

Research Report 1999 7 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

J. Martens et al.

using a roulette wheel strategy (RWS) that takes into account the fitness values of the chromosomes. Given a

parental pair of chromosomes, the genetic operators below are executed with a certain probability. By varying

this probability level for crossover and mutation separately, the genetic conduct of the algorithm can be

customised during execution time.

• one-point crossover: new chromosomes in the population are formed by exchanging segments of the

parents. After determining a cutting point in a genetic string, segments beyond this point are swapped

between parents to generate offspring.

• two-point crossover: this type of crossover generates new chromosomes by interchanging pieces of

parental chromosomes between two randomly chosen cut-off points.

• mutation: the mutation operator scans every bit of a chromosome and inverts it with a certain probability.

Notice that the above crossover and mutation operators were actually carried out in a double stage

procedure. As a matter of fact, chromosomes were split up into a part containing only network related

variables and another part containing binary encoded height variables. Genetic operators were then carried out

separately on both parts using individual crossover and mutation rates. Although this approach is essentially

non-universal in nature, it was necessary to ensure the possibility of swapping cross pattern xij,,-variables

without exchanging the accompanying z;' s. Direct application of classic genetic operators on the initial

encoding sequence in Figure 3 might in that way have caused some feasible solutions to be highly

unreachable.

3.3.3. Algorithm backbone

Given the above design of the fitness function and the working method of genetic operators, the major

backbone of our algorithm can be summarised as follows (depending on the offspring strategy applied):

Research Report 1999 8 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

set up an initial population of feasible chromosomes
evaluate the population of chromosomes
repeat

select two chromosomes which function as parents
apply genetic operators (crossover & mutation) to

generate offspring
replace the worst chromosomes in the population by

the new children
evaluate the population of chromosomes

until a stopping condition is met

set up an initial population of feasible chromosomes
evaluate the population of chromosomes
repeat

for all the chromosome pairs in the population do
begin

select two chromosomes which function as
parents

apply genetic operators (crossover & mutation)
to generate offspring

add the offspring to a new population
end
replace the old population by the offspring
evaluate the new population of chromosomes

until a stopping condition is met

J. Martens et al.

Table 3: Genetic algorithm layout for steady state (top) and generation strategy (bottom)

Adopting a steady genetic evolution strategy (top) means going through a number of iterations during

which pairs of generated children replace the worst solutions in the population. Following a generation

strategy (bottom) on the other hand implies creating an entire new population of solutions after which the

original population is completely replaced by generated offspring. In order to maintain the best solutions in

every popUlation, an elitist strategy is applied in case of the generation approach.

3.4. Preliminary results

We applied the above genetic algorithm to an extensive number of problem cases, including the example

in Table 1. The major parameters we examined in our algorithm were the penalty factors in the fitness

function, the popUlation size, the generation strategy, the parent selection method, the type of crossover

applied and the crossover & mutation rates.

Although it was mentioned yet feasibility of chromosomes after executing genetic operators is not

guaranteed, it was hoped that an accurate arrangement of penalty factors, together with a well-thought design

of other parameters would somehow suppress constraint-breaching solutions and enforce feasibility in the

long run. However, after a profound period of intensive testing, it was concluded that no suitable parameter

set up existed to make the algorithm work. We varied also a few other minor ad hoc parameters without any

significant success. In most cases, intermediate populations consisted largely of adamantine infeasible

solutions and only a few valid proposals far from the optimal cutting pattern.

Research Report 1999 9 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

In light of these preliminary results, it was believed that letting the algorithm drive itself through the space

of feasible/infeasible solutions soon renders it completely adrift and meant putting too much of a burden on

the penalty factor/parameter set up. In the next paragraph, the algorithm is therefore submit to a profound

enhancement phase to improve the algorithm's performance and to reduce the probability of generating

infeasible solutions.

4. Genetic Enhancement

4.1. Enforcing feasibility continuance in the network constraints

4.1.1. Crossover design

In the appendix, we derive probability expressions for maintaining a feasible network-knapsack flow after

applying either one- or two-point crossover. The analysis is based on a non-converged, random population of

feasible knapsack solutions (genetic heterogeneity) that are submitted to either a one- or a two-point crossover

operator with equal probability. For a particular problem dimension (I R I, I p I and b), it can be proven the

likelihood of preserving feasibility in the network constraints can be written as in the equation below (the

reader is referred to the appendix for an explanation of the variables used).

£ b.IRI.lpl =

.!.[IRI + (lPH)IRI p+ ~ a(1tO +iti5)]+
2 A. A. ~ I I I I I

(7)

(IRI)(A.)2
2 jR[[IRI (lPI-l)IRI ~ (~ _;:)]2

(
') -+---p+ ..:.,a j 1t jUj +1t j Uj +
'" A. A. j~l
2

2

For the problem dimensions in Table I (I R I =3, I P I =5 and b=4,), direct evaluation of (7) reveals the

likelihood fb,IRI,IPI of preserving feasibility in the network constraints turns out to be no more than 20%.

Figure 4 illustrates this feasibility maintenance rate for a set of varying problem dimensions, fixing the

number of patterns I R I to a value of 3 and letting b and I P I vary on the interval [l,10).

Research Report 1999 10 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Martens et ai.

Figure 4: Genetic feasibility continuance plane after applying crossover for varying problem dimensions

Although it can be argued that infeasible solutions may return to the domain of feasible proposals after

applying crossover or mutation, empirical results show this event to be extremely unlikely. An initial

population of feasible solutions will hence be shrunk by an approximate factor of (l b,IRI,IPI r after going

through t crossover iterations.

In order to circumvent this infeasibility tendency, many authors in the literature apply some sort of repair

strategy that fixes errors in a chromosome [1,9,2,18]. Although preliminary experiments with this repair

strategy showed promising results, we felt that little authentic genetic behaviour was left. Indeed, for the

problem dimensions in Table 1, a repair was needed in 80% of the cases and was basically carried out by

scanning a chromosome for errors and fixing either the preceding or the following part in a complete random

fashion. We therefore designed an intelligent one- and two-point crossover operator (Xn, & Xn2) that does

guarantee feasible offspring and makes any repair action superfluous. Careful analysis of the genetic material

reveals that the class of feasible knapsack solutions is completely covered when crossover points are

positioned only after a collection of xij,,-variables for a particular size. Moreover, when a crossover point (cp)

is chosen among a set of points at which the network state (ie. the total flow in cp) is identical across both

parents, an intelligent crossover operator comes out that takes into account the idiosyncrasy of the problem at

issue. The figure below illustrates the working method of this crossover for the two-point crossover scenario,

taking into account that the network flow at both crossover points must be equal across both parents.

Research Report 1999

parent I

parent 2

child I

child 2

end of size x ----" end of size y ----"

ITfllll:llll
-,·.11111111111_

Figure 5: lllustration of the intelligent two-point crossover operator

11 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

J. Martens et al.

Although the above crossover operator is basically non-universal in nature, we feel that it is much more

suitable from a schemata point of view and that it is capable of exchanging fundamental genetic structures

without loosing essential genetic granularity power. As a matter of fact, elementary genetic schemata for the

problem at hand are strings of size related bits that represent a number of stencils laid for a particular amount

of free space left on the cutting table. Genetic evolution comes in this case then down to the swapping of size

related genetic material across chromosomes instead of incoherent individual bits.

4.1.2. Mutation design

While the above crossover design warrants feasibility maintenance, the application of mutation may still

rupture the network flow. In the appendix, the class of mutation scenarios that preserve feasibility with

respect to the network constraints is defined. The analysis comes down to the disclosure of the fact that

mutations on feasible chromosomes have to take place in pairs within a particular size. Moreover, since

mutating bits in a particular size boils down to altering the number of stencils, mutations should always

proceed in strings (0') of length t (t >= 2) of consecutive sizes in order to preserve the total flow through 0'.

Taking into account feasible mutation threads can be formed by combining several 0" s, the total number of

allowable mutation scenarios can be written as in the equation below (the reader is again referred to the

appendix for an explanation of the variables).

Consequently, we designed an intelligent mutation operator (Il") that randomly carries out a mutation

scenario of M. The figure below illustrates the application of this intelligent mutation operator when

mutations take place in strings 0', and 0'2 within patternj.

Research Report 1999

chromosome

pattemj

chromosome

pattemj after

mutation

Figure 6: Illustration of the intelligent mutation operator

I2 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

4.2. Local stack altitude optimisation

1. Martens et al.

Although a similar strategy as above could now be advocated for managing feasibility in the height

constraints, we felt that the translation of integer height variables into a binary representation, followed by the

application of a parallel genetic algorithm with intelligent crossover or mutation operators would be an

inefficient way of determining height variables for a particular chromosome. Moreover, careful examination

of the problem at hand reveals that the algorithm's search space is primarily set up by the network related Xij"·

variables. As a matter of fact, it is straightforward to associate optimal or near optimal numbers of stack

layers (zj-variables) with a particular network flow by setting all z/ s to their maximum value and

decrementing them step by step until one or more demand constraints become violated. Hence, instead of

developing a parallel genetic algorithm to work on the height variables, a local height optimisation strategy

(11) was chosen that assigns stack variables Zj to every chromosome in the population.

4.3. Heuristic demand feasibility operator

The genetic algorithm so far developed operates within the domain of feasible solutions with respect to

both network and height constraints. Although intelligent crossover and mutation operators could have been

designed coercing the algorithm to satisfy demand constraints as well, it was believed this would severely

have lessened the number of feasible genetic progress pathways and have endangered the algorithm to strand

early in local minima.

Extensive initial experiments revealed the genetic algorithm gives favourable results, although it was felt

both the execution time and a regular reach of the optimal solution still needed improvement. The table below

depicts typical results that were obtained by applying our GA to the problem case in Table 1. In some runs, it

appears that after many iterations, the algorithm was still navigating through solutions that violated the

demand constraints. Also, only once the optimal cutting proposal to the problem at issue was found.

Best
2

Solution

Avg.
35.1 2568 26.3 89 33.2 32.1 2660

Penalty

Table 4: Best solution and average penalty for seven runs on Table 1

To enforce the algorithm to produce only acceptable cutting stock proposals during the entire genetic

evolution path, a local heuristic network optimisation (v) was carried out that rearranges the flow through the

network until a solution is achieved that satisfies the demand constraints as well. Chromosomes are altered

through a cascade of flow redirections using the following heuristic procedural network modification:

Research Report 1999 I3 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

try to satisfy demand by increasing the number of layers
while demand is not satisfied do
hegin

end

either try to satisfy demand by filling empty places on the
cutting table

either switch stencils across sizes within a pattern
as follows

select randomly a demand breaching size s
select randomly a demand overshooting size s'
decrement the number of stencils for s I in a random

pattemp
increment the number of stencils for s in p

end 'as follows'
adjust the sets of demand breaching and demand

overshooting sizes

delete any superfluous stencil within a particular pattern

Table 5: Heuristic network flow redirection

J. Martens et al.

Every chromosome that goes through the above heuristic feasibility operator is guaranteed to have a network

flow for which an accompanying set of feasible fabric layers exists (zrvariables) that renders the entire

chromosome feasible with respect to all the problem constraints.

5. Results

5.1. Parameter setup

5.1.1. Population size, replacement rate & number of generations

A well-thought population size (K) is imminent since a population too small may leave vast areas of the

solution space uncovered, while a population too large soon demands a tremendous amount of processor time.

Also, the algorithm should run for an adequate number of generations (t) to allow for a satisfactory level of

convergence. Concerning the percentage of chromosomes to be generated every iteration (r), a combination of

a steady state generation approach and a delete all strategy with elitism is advocated. In fact, initial

experiments revealed it is desirable to replace only a few chromosomes by offspring to allow smooth and

regular convergence while more replacements should take place to increase the algorithm's performance.

Anyway, bad specification of K, t and r may jeopardise both the coverage of the solution space and the

algorithm's overall speed of convergence.

It is therefore believed that a useful lower bound relationship between K, t and r can be defined by

ensuring that the number of feasible network flows for a particular pattern is covered by generated offspring.

Straightforward calculation shows the total number of feasible network flows to be:

Research Report 1999 14 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

(9)

Hence, following the above rationale, any parameter setup of 1(, t and r should satisfy:

nfs ::; tr K (10)

5.2. Crossover and mutation strategy

1. Martens et al.

Extensive preliminary testing indicated crossover is mainly responsible for overall population

convergence during early phases of evolution. It is therefore preferable to hold mutation as low as possible

not to disturb this crossover driven genetic population improvement. However, after some point in time,

crossover seems to have shaped fundamental schemata that appear in many solutions, as indicated by the

figure below:

0.9

0.6
percentage flow

~ . 4
0.6" ~i
0.5 ~;'~.~--- ... --\:./ •.. ~/j
0.4

0.3

0.2

0.1

average core fitness

o~--__ ----__ --__ --__ --~
o 20 40 ., eo 100

Figure 7: Crossover driven schemata density evolution and average core fitness

Figure 7 depicts a typical percentage flow of chromosome pairs in the steady core that have an equal number

of free stencil positions at particular stages in the knapsack network over several generations. The figure is

based on the problem dimensions of Table 1; values are shown for all patterns and are averaged across sizes

within a pattern .. The average core fitness values were calculated using the following scaling function (K

represents the core size): ~fPf%(i<:) .
..!.Pf,(i<:) K,

Although at some points in time a minor level of diversity is reappearing, it is clear that fundamental

network states (schemata) are distributed across the entire population and that crossover in the long run will

merely swap these schemata across parents without little additional convergence effect. At that moment, it is

highly preferable to reintroduce variety in the entire population by mutation. Hence, in order for mutation and

crossover to be effective, it was concluded that:

Research Report 1999 15 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

• the crossover rate should be as high as possible when no major convergence has occurred yet

• the mutation rate should depend on a measure of convergence

• mutation should proceed through the entire population

• mutations should take place within those sizes that contribute most to the penalty function

Let now Sdi(t) stand for the schemata density curve as pictured in Figure 7 for pattern j at generation t, then

a measure of population convergence within pattern j is given by estimating lasdJ(%:I. Modelling the fact

mutation should be more active in penalty contributing sizes can be done by defining a mutation rate per size

and letting the rate vary with the size's overall core total overproduction share, which is given by:

(11)

Extensive preliminary experiments revealed a scaling factor was needed in combination with the above

expression to define an efficient mutation and crossover rate as follows:

-1.10 ---
m(i,j) = e a (12) [

,laSdi(%:I]

1 iPiiRi ..
cr =1--

1
I-I ILLm(I,J) (13)

P R i=lj=l

Chromosomes in the entire population will thus be submitted to a mutation process that scans the genetic

material across sizes (i) and patterns (j) and initiates a particular mutation scenario involving size i within

pattern j with a probability equal to m(i,j). Also, offspring is generated by applying a crossover rate c, that is

inversely proportional to the average m(i,j).

5.3. Major results and comparison to other techniques

We compared the performance of our GA to both the LP formulation of the problem as discussed in

paragraph 2.2 (LPl) and two alternative formulations that were recently proposed by [6] (LP2 & LP3). The

table below gives an overview of all the test cases used with their optimal solution (minimum excess).

Research Report 1999 16 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

Case Parameters A vai1able Demand Data
Nr. b iRi ipi H
1 4 3 5 35 54 84 91 60 29
2 4 3 5 35 25 70 63 54 39
3 4 3 5 35 33 82 77 62 34
4 4 3 5 35 74 64 28 34 59
5 4 3 5 35 21 54 61 5 41
6 4 3 5 35 21 54 61 15 41
7 5 3 6 10 8 12 14 23 16 6
8 5 3 4 50 78 133176 96
9 5 3 6 50 44 58 68]]9 78 34
10 3 4 6 50 37 48 58 63 44 29
]] 5 4 6 10 19 25 40 43 31 17
12 5 4 6 50 98 145 180207 167 83
13 6 5 6 50 115 152 44 284196135
14 6 5 7 50 120 70 130 170 208 50 100
15 6 6 7 35 59 100 103 73 121 52 35
16 6 6 8 35 112 142 127 72 71 56 102 51
17 8 6 8 35 58 71 106311 208 101161 70

Table 6: Characteristics of test cases used

1. Martens et al.

Min.
Excess

1
1
1
1
1
2
0
0
1
0
5
0
0
0
0
0
0

The genetic algorithm applied on a population of chromosomes (c) and a steady core (K) at time t with

preservence of the best solution (c~) can now be jotted down as:

'lfCl"K:C,+1 =11ovo{~m(i,j)l1n oCr{Xnl /\Xn,}(C,.§,)}
I,J

'lfc E K \ {cn: c,+1 = 11 0 v o {rm(i,j) I1n(C,)} (14)
I,J

We defined the performance of the above GA by executing 10 independent runs for each case and by

calculating the average time the algorithm took to reach the optimal solution, If the optimal cutting layout was

not found, the time it took the algorithm to reach the best cutting pattern in the population was taken into

consideration. The table below gives an overview of the initial problem cases tested together with their

optimal solution (minimum excess) and the execution times for LPl-3 and the genetic algorithm. Also, the

table depicts the best solution the GA found in 10 runs and an accuracy level as the percentage of runs that

reached the optimal cutting pattern, Values between parentheses indicate best solutions if the optimal solution

wasn't found, ego in case 4, 2 runs produced a sub-optimal solution with an excess of 2 articles.

Research Report 1999 17 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

Case Min. Execution Times
Exc.

LP1 LP2 LP3
1 1 1B:32 2:19 0:56
2 1 3B:27 6:16 3:51
3 1 20:04 4:00 2:01
4 1 35:29 4:39 4:04

5 1 41:12 5:56 2:0B
6 2 7:41 4:35 5:33
7 0 > lOh 31:53 >1h
B 0 3:40 0:35 5:04
9 1 >40h =2h > 15h

10 0 56:41 13:44 5:31

11 5 >40h 26:00 >llf2h
12 0 >40h 29:12 36:43

GA Accu~

best racy
GA
< 1, 1 1
0:05 1 1
0:05 1 1
0:09 1 O.B

(2x2)
O:OB 1 1
0:03 2 1
0:03 0 1
O:OB 0 1
0:11 1 O.B

(2x2)
0:13 0 0.4

(6x1)
0:00 5 1
0:16 0 0.7

(3x5)

Table 7: GA versus LPl-3 performance (minutes:seconds)

1. Martens et al.

The table above was constructed by generating a maximum of 5000 new chromosomes, using the

parameters r=25%, K=100, t=200, well satisfying the lower bound relationship (10). For the LP models, a

Pentium II 233Mhz was available, while the genetic algorithm ran on a Pentium II 400Mhz station. For

comparative reasons, one can multiply the execution times of the GA by a factor of approximately 312 to

obtain an estimate of results that would have been achieved on a 233Mhz station.

The conclusions that can be drawn from Table 7 are twofold. First, the performance of the GA is severely

better than any of the LP formulations presented. The algorithm finds optimal or near optimal solutions in a

time span far narrower than any LP model. It should be mentioned however that the execution times for LP

formulations involve a large amount of time to prove the superiority of a solution that was found much earlier.

On the other hand, direct comparison of execution times between an LP model and the GA can be done for

cases that have an optimal solution with no overproduction (zero excess). Hence, for cases 7,8,10 & 12, it still

took the LP models a significant larger amount of time to actually reach the optimal solution of zero excess.

In order to circumvent the possible blurring effect of comparing results for cases with a non-zero

overproduction an additional set of test cases was designed. The table below contains the execution times of 5

new test cases for the second LP model (LP2 performs best for complex cases) and the genetic algorithm. The

results of Table 8 were achieved using customised values of K, t and r (all execution times are 400Mhz

results). Combining the results of Table 7 and Table 8 for cases with zero excess, it is apparent the GA needs

a significant lower amount of time to reach the optimal cutting pattern compared to any of the LP models.

Also, for the most complex cases (16 and 17), it was found it took LP2 more than a full day of processing to

come up with a feasible solution.

Research Report 1999 18 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

Case Min. Execution Times
Exc.

K l f LP2

13 0 100 200 25% ,,2h

14 0 100 200 25% > 24h*
15 0 100 200 25% > 24h*
16 0 200 200 25% > 24h*

17 0 200 400 25% > 24h*

1. Martens et al.

GA Accu-
best racy

GA

0:50 0 0.6
(4x1)

0:32 0 1
0:50 0 1
2:48 0 0.6

(4x1)
7:16 0 1

Table 8: Results on additional zero~excess cases (minutes:seconds, * = execution was halted after indicated time)

A second remark that has to be made about the results in Table 7 concerns the fact for some cases the

optimal cutting pattern is not always reached by the GA. Indeed, for cases 4, 9, 10 and 12, the accuracy rating

drops to a somewhat mediocre level of about 60%. It is believed however the accuracy is heavily dependent

on the parameter setup of K, t and r. Therefore, we submitted the former cases again to our GA removing the

upper limit on t, setting r to 25% and K to 100. The results in the table below indicate the average execution

times (10 runs per case) are still lower compared to any of the LP models. In most runs, the optimal solution

was found in less than 2 minutes. However, for case 10, it took the GA in a particular run more than 7 minutes

to find the optimal solution. Leaving the removal of the upper limit, we therefore also increased both the

population size and the replacement rate. As can be seen in Table 9, GA average execution times are

improved for all cases while maximum times are severely reduced. Based on the results in Table 9 it is

conceived careful arrangement of K, t and r is imminent since these parameters play an important role in the

overall performance of the genetic algorithm.

Case Rep. Population Average Time Max Time
Rate (f) Size (K)

4 25% 100 0:22 1:07
9 25% 100 0:36 1:42
10 25% 100 2:08 7:06
12 25% 100 1:21 3:10
4 50% 200 0:08 0:13
9 50% 200 0:17 0:41
10 50% 300 1:07 5:50
12 50% 300 0:25 1:15

Table 9: Execution times removing upper limit on 1 for varying 1C and r

6. Conclusions and Future Research

In this paper, we constructed a powerful hybrid genetic algorithm for solving a layout problem in the

Belgian fashion industry. Through a set of initial experiments, it was found a universal GA approach yields

less than satisfactory results. Further analysis indicated an effective constraint handling technique was

indispensable to improve the algorithm's performance. In light of these findings, intelligent schemata based

genetic operators were constructed and implemented together with a local optimisation strategy and a

heuristic feasibility operator. These enhancements severely reduced the active genetic universe and were able

Research Report 1999 19 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

to confine the algorithm to the space of feasible solutions. Moreover, an intelligent variable mutation and

crossover rate scheme was used to allow for rapid convergence during early phases of evolution without loss

of essential genetic diversity. Finally, computational results indicated the GA was considerably faster than

any LP model yet developed.

As a result of this study, many future research activities can be carried out on the problem at hand. It

might be interesting to investigate how the GA can effectively be used as an initialisation procedure for any of

the LP models. On the other hand, research can be carried out on how the algorithm can decide itself about

good (feasible) crossover points by inductive learning [21] as an alternative to the peculiar design strategy

applied in this article. Also, in light of recent activities [11], the fruitfulness of applying co-evolutionary

genetic algorithm techniques for handling problem constraints can be analysed.

Acknowledgement

We would like to thank Prof. Dr. F. Put for making this research possible. Also we would like to

acknowledge Prof. Dr. Ir. Z. Degraeve for providing us with initial research material and R. Jans for

additional comments on the LP model results. Finally, a word of gratitude is owed to P. Claes for research

assistance.

7. References

[1] Beasley J.E. & Chu P.C., A Genetic Algorithm for the Set Covering Problem, European Journal of

Operations Research, 94,1996, pp. 392-404.

[2] Beasley J.E. & Chu P.C., A Genetic Algorithm for the Multidimensional Knapsack Problem, Journal of

Heuristics, 4, 1998, pp. 63-96.

[3] Beasley J.E. & Chu P.C., Constraint Handling in Genetic Algorithms, The Set Partitioning Problem,

Journal of Heuristics, 11, 1998, pp. 323-357.

[4] Chen C.L., Vempati V.S. & Aljaber N., An Application of Genetic Algorithms for Flow Shop Problems,

European Journal of Operations Research, 80, 1995, pp. 389-396.

[5] Davis L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, NY, 1991.

[6] Degraeve Z., Gochet W. & Jans R., Alternative Formulations for a Layout Problem in the Fashion

Industry, Research Report, KUL, 1998.

Research Report 1999 20 Information Systems Group

A Hybrid Genetic A 19orithm for Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

[7] Degraeve Z. & Vandebroek M., A Mixed Integer Programming Model for Solving a Layout Problem in

the Fashion Industry, Management Science, 44,1998, pp. 301-310.

[8] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,

1989.

[9] Gottlieb J. & Paulmann L., Genetic Algorithms for the Fixed Charge Transportation Problem,

Proceedings of the 1998 World Congress on Computational Intelligence, FUZZ-IEEE & ICEC, 1998, pp.

330-335.

[10] Grefenstette J.1., Incorporating Problem Specific Knowledge into Genetic Algorithms, in: Davis L.,

Genetic Algorithms and Simulated Annealing, Los Altos, CA, 1937.

[II] Handa H., Katai 0., Baba N. & Sawaragi T., Solving Constraint Satisfaction Problems by Using

Coevolutionary Genetic Algorithms, Proceedings of the 1998 World Congress on Computational Intelligence,

FUZZ-IEEE & ICEC, 1998, pp. 21-26.

[12] Holland J.H., Adaptation in Natural and Artificial Systems, Ann Arbor, The University of Michigan

Press, 1975.

[13] Homaifar A., Lai S.H.-Y & Qi. X., Constraint Optimisation via Genetic Algorithms, Simulation, 62,

1994, pp. 242-254.

[14] Le Riche R., Vayssade C. & Haftka R.T., A Segragated Genetic Algorithm for Constrained Optimisation

in Structural Mechanics, Technical Report, Universite de Technologie de Compiegne, France, 1995.

[15] Michalewicz Z. & Attia N., Evolutionary Optimisation of Constrained Problems, Proceedings of the 3,d

Annual Conference on Evolutionary Programming, 1994, pp. 98-108.

[16] Michalewicz Z., The Significance of the Evaluation Function in Evolutionary Algorithms, Proceedings of

the Workshop on Evolutionary Algorithms, University of Minnesota, 1996.

[17] Powell D. & Skolnick M.M., Using Genetic Algorithms in Engineering Design Optimisation with Non­

Linear Constraints, Proceedings of the 5th International Conference on Genetic Algorithms, 1993, pp. 424-

430.

Research Report 1999 21 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

1. Martens et al.

[18] Raidl G.R., An Improved Genetic Algorithm for the Multiconstrained O-i Knapsack Problem,

Proceedings of the 1998 World Congress on Computational Intelligence, FUZZ-IEEE & ICEC, 1998, pp.

207-211.

[19] Rojas R., Neural Networks: A Systematic introduction, Springer-Verlag, Berlin, 1996.

[20] Schoenauer M. & Xanthakis S., Constrained GA Optimisation, Proceedings of the 5th International

Conference on Genetic Algorithms, 1993, pp. 573-580.

[21] Sebag M. & Schoenauer M., Controlling Crossover through inductive Learning, Proceedings of the 3'd

Parallel Problem Solving from Nature Conference, Jerusalem, Israel, 1994.

[22] Whitley D., Starkweather T. & Shaner D., The Travelling Salesman and Sequence Scheduling: Quality

Solutions using Genetic Edge Recombination, in: Davis L., Handbook of Genetic Algorithms, Van Nostrand

Reinhold, New York, 1991.

8. Appendix

8.1. Crossover analysis

8.1.1. One-point crossover

Let EI and E, denote the events of maintaining solutions that satisfy the flow constraints after applying

respectively one- and two-point crossover. Careful analysis of a genetic structure reveals that feasibility

continuance depends heavily on the position of the crossover point(s) (cp(s)) within the network related

variables Xii'" For one-point crossover, the following cases can be identified:

i. cp after pattern j: feasibility is always guaranteed when crossover takes place right after a pattern since

network variables are independent across patterns.

2. cp after size i within pattern j, i;e/P/: feasibility is only maintained if the number of free stencil positions at

the crossover point is identical in both parental chromosomes. Assuming a heterogeneous, non-converged

genetic popUlation, this number will be unifonn on [O,b] and hence will be equal across both parents with

probability p = _(1).
b+l

3. cp within size i within pattern j: feasibility can only be preserved if the crossover point is positioned ahead

of the first or behind the last non-zero Xii" variable within size i across both parents. Assuming genetic

heterogeneity, the probability the crossover point falls ahead of the first non-zero Xii" within size i can be

written as:

Research Report 1999 22 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

E[# of cp' s before the first non - zero Xijrs within size i 1
number of cp's within size i

1. Martens et al.

After some calculation, the probability of performing a crossover preceding the first significant Xijrs within

size i equals:

The probability then the crossover point falls after the last non-zero Xij" within size i reads after some

calculation:

(;;+1 / 2 2. (Si +1-k)(2(k-l)+I) (Si +1)
ii: (r.) = """k~::.!...I ________ _

1 ~l Si

In both foregoing cases, the application of the crossover operator will only hold feasibility if the number

of free stencil positions is identical at the crossover point across both parents.

Due to the network-knapsack formulation of the problem, the probability of having an equal number of

remaining stencil positions at the crossover point, is size dependent. Following this rationale, peE,) can then

be written as an aggregate of three terms corresponding to the above scenarios, where the following matrix

notation was used (/.. represents the total number of network related bits in a chromosome):

Research Report 1999 23 Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

peE) = IRI + (lPI-l)IRI p+ ~a(1to +ft.8) (15)
I" " i=! I I I I I

8.1.2. Two-point crossover

J. Martens et al.

A two-point crossover operates by randomly selecting two crossover points (CPI & CP2) and by swapping

the interlaying parts of the parental chromosomes. Hence, a two-point crossover can be regarded as a "virtual

sequence" of two one-point crossovers. Depending on CPI & CP2' we have:

1. CPI & CP2 within pattern j & j', j;ej': feasibility is maintained if both imaginary one-point crossovers

preserve feasibility.

2. CPI & CP2 within pattern j: a distinction must be made between a feasible and an infeasible result after

applying the first imaginary one-point crossover. In case the intermediary result is feasible, feasibility will

only be further maintained if the number of remaining stencil positions at CP2 is equal, which occurs with

probability p = -(I) where ~ stands for the number of free positions at CPl' In case the intermediary
~+I

result is infeasible however, "undoing" the action of the first crossover can only restore feasibility.

Let 'I' stand for the relative position of CPI in pattern j and i for the size in which CPI is located (i is

completely determined by '1'). Let 'I' and ~ be independent for i > I (genetic heterogeneity) and let ro be the

(
i b+! J number of remaining bits within size i,ro=):: I,k -'1'-1. If one defines the set of allowable ~'s for a

i=l k=l+bS il

particular 'I' as ~('I') then P(E2) can be written as in (16), using the matrix notation below:

flt = P(Etl
4xl

Research Report 1999 24

1

A./IRI-'I'
IPI-i

A./IRI-'I'
OJ

A./IRI-'I'
(

b+1) (lPI-i) ~Ik-l

A./IRI-'I'

Information Systems Group

A Hybrid Genetic Algorithmfor Solving a Layout Problem
in the Fashion Industry

8.2. Mutation analysis

"JSi)(1-0i (A./IR~ - 'V)

~ = (1-"Jsi)-iti(Si))(A./I~_'V)
itJsi)(1-8i)

J. Martens et al.

In order to maintain feasibility in a chromosome during mutation, the xij,,-variables have to be modified in

pairs at the bit level within a specific size. Moreover, the network-knapsack formulation of the problem

implies that mutations have to take place in strings of consecutive sizes cr. For a particular cr, a feasible

mutation comes down to a rearrangement of the number of stencils for sizes within cr. Let now L t , stand for

the set of tk (tk ~ 2) consecutive sizes (the network formulation implies there is one exception for the tk -

constraint: L t , = {IPI} fortk=l) and let etk(Yk) stand for the number of rearrangements when Yk stencils are

laid in a string of length tk. For an even number of mutations i, feasibility maintenance boils down to

combining elements cr tk of several sets L t" satisfying L tk = i/2, and by rearranging the number of stencils
k

Research Report 1999 25 Information Systems Group

A Hybrid Genetic Algorithm for Solving a Layout Problem
in the Fashion Industry

j

1. Martens et al.

in eachcr'k' taking into account the total flow in & out ofcr'k' Let now X L, stand for the Cartesian product
k=l k

j J -
of sets L, ' enforcing X L, n X L, == 0, j ¢ j, then it follows that the number of feasible mutation

k k=l k k=l k

scenarios IMI can be written as in (17).

Research Report 1999 26 Information Systems Group

