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A Hybrid Genetic Algorithm for Solving a Layout 

Problem in the Fashion Industry 

Abstract: As of this writing, many success stories exist yet of powerful genetic algorithms (GAs) in the field of 

constraint optimisation. In this paper, a hybrid, intelligent genetic algorithm will be developed for solving a 

cutting layout problem in the Belgian fashion industry. In an initial section, an existing LP formulation of the 

cutting problem is briefly summarised and is used in further paragraphs as the core design of our GA. 

Through an initial attempt of rendering the algorithm as universal as possible, it was conceived a threefold 

genetic enhancement had to be carried out that reduces the size of the active solution space. The GA is 

therefore rebuilt using intelligent genetic operators, carrying out a local optimisation and applying a 

heuristic feasibility operator. Powerful computational results are achieved for a variety of problem cases that 

outperform any existing LP model yet developed. 

Keywords: Genetic Algorithms, Layout Problem, Constraint Handling 
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As of this writing, genetic algorithms (GAs) have demonstrated their potential for a large set of hard, 

intractable optimisation problems. Recently, there have been successful research attempts to apply GAs for 

solving a wide number of well-known constraint satisfaction problems, ego the job scheduling [4] and the 

transportation problem [9], the travelling salesman dilemma [22] and the knapsack [2,18] and the set covering 

problem [1,3]. 

In this paper, we propose a genetic algorithm to solve a cutting layout problem in the Belgian clothing 

industry. For several years now, exclusive clothing manufacturers are coping with the problem of working out 

an optimal cutting pattern for expensive articles where operating costs and production excess should be as low 

as possible. The computational complexity that is inherently associated with this problem has motivated yet 

many researchers to come up with better, more efficient linear programming formulations that produce both 

optimal and near optimal solutions in an acceptable boundary of time [6,7]. However, when problem 

dimensions increase, these techniques tend to slow down considerably and take a significant longer amount of 

time to produce acceptable cutting proposals. As will be demonstrated in the following paragraphs, a genetic 

algorithm approach yields solutions faster than any LP model yet developed and is able to render excellent 

proposals almost instantaneously. 

The paper is organised as follows. In section 2, a more detailed description of the layout problem is given, 

together with a condensed outline of the LP model as it will be used in our GA. In section 3, an initial GA is 

developed, giving special attention to the encoding mechanism applied and the layout of the fitness function. 

The core features of our GA are primarily developed in light of universal genetic algorithm theory, as can be 

found in many general GA textbooks [12,5,8]. Due to the poor quality of preliminary results achieved, a 

threefold genetic enhancement is carried out in section 4 that effectively shrinks the active operating universe 

of the genetic algorithm. Our initial GA is improved by creating intelligent genetic operators, by executing a 

level of local optimisation and by implementing a heuristic demand feasibility operator. Section 5 contains 

then our major research results and compares the performance of the GA with other techniques. The paper is 

concluded by summarising the most important topics and by giving some ideas for future research. 

2. The Layout Problem 

2.1. Problem description 

For a particular clothing article that is available in various sizes, the layout problem boils down to finding 

a collection of cutting table layouts that allow to satisfy demand with as little article excess as possible. In 

essence, setting up a cutting table corresponds to placing a number of stencils on the table where every stencil 

consists of several layers of fabric. A sequence of stencils is called a pattern and every stencil in a pattern is 
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associated with a particular size. Cutting equipment specifications make the number of stencils per pattern 

limited and enforce all stencils within a specific pattern to contain an equal number of fabric layers. 

The figure below pictures a possible pattern composition, embodying 3 stencils of 2 different sizes, where 

the number of layers equals 5. 

Figure 1: Possible layout of a pattern 

Preparing a cutting table is a very time consuming and labour intensive process that makes the number of 

patterns should be kept at a minimum level. Since production costs are generally much more sensitive to 

adding additional patterns than to overproduction, the number of patterns is decided upon analytically by 

setting the number equal to the minimum number of patterns that are needed to fulfil demand. 

Table 1 illustrates a typical cutting problem where demand is available for 5 different sizes (I pi), a 

maximum of 3 cutting patterns may be used ( I R I) that can consist of a sequence of 4 stencils (b), no more 

than 35 layers of fabric high (H). The number of necessary patterns to produce sufficient articles of each size 

was set to its lower bound value of 3. 

Sizes 

Height 38 40 42 44 46 

Pattern 1 27 2 2 0 0 0 

Pattern 2 31 0 1 2 1 0 

Pattern 3 29 0 0 1 1 1 

Production 54 85 91 60 29 

Demand 54 84 91 60 29 

Excess 0 1 0 0 0 

Table 1: Cutting proposal, demands and excess production 

2.2. LP formulation 

As can be read in [7], a straightforward formulation of the layout problem leads to a general integer, non-

linear programming problem. The authors attempt to render the model solvable as a general integer linear 

program through a set of discretizations and linearizations of the variables used. Also, a network-knapsack 

approach to the cutting problem is advocated where the number of stencils in a pattern is decided upon by 

going through the various sizes sequentially. After an extensive derivation, the authors have come up with the 
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LP fonnulation below. where the variables Xijrs and Zj constitute the core variables of the problem at hand. In 

the model. the variable xijrn will equal 1 if one puts s stencils of size i in pattern j when r stencil places are still 

free. The variable Zj on the other hand represents the number of clothing layers in pattern j. The authors 

formulate the objective function of the cutting stock problem such that the total production of articles is 

minimised while satisfying a collection of demand. network and height constraints. The figure below depicts 

the final LP model (the variable Viik = Zj when k stencils of size i are put on the table in patternj. 0 otherwise): 

Min L, L, L,kvijk 
ieP jeR keB 

subject to: 

L Lkvijk ;::: d i . 'Iii E P 
jeR keB 

{demand constraints} 

Yj = LXljbs • 'lij E R 
seB 

r 

Xljb(b.r) = LX2jrs • 'lij E R. 'lir E B 
s=O 

b-r r 

LXij(r+s)s = LX(i+l)jrs • 'lij E R. 'lir E B. 
s=O s=o 

'Iii E P \ {1.IPI} 
{ network constraints} 

LVijk =Zj • 'Iii E p. 'lij E R. 'lik E B 
keB 

b 

Vijk :'> HL,Xijrk • 'Iii E p. 'lij E R. 'lik E B 
r=k 

Zj:'>HYj .'lij E R 

{height constraints} 

Vijk ;:::0. Xijrs E{O.I}. Yj E{O.I}. 

Zj E {0.1.2.3 •... }. 'lij E R. 'Iii E p. 

'lik.r.s E B. s:'>r 

Figure 2: Objective function and demand. network and height constraints for the LP model 

The demand constraints in the LP model assure that the final cutting proposal will meet the available 

demand data of the various sizes. The network constraints on the other hand force us to allocate sizes to a 

particular pattern in a sequential way. taking into account the amount of free space left. The network is 
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processed starting with size I and ending with size 1 P I. Finally, height constraints take care of the fact that 

the number of clothing layers in a pattern is not exceeding its upper limit H. 

3. An Initial Genetic Algorithm Approach 

3.1. Genetic algorithms 

Genetic algorithms were invented to mimic some of the processes observed in natural evolution when 

solving difficult problems in a wide spectrum of scientific domains. The basic features of this evolutionary 

process made Holland [12] in the early 70's believe that, when appropriately incorporated in a computer 

algorithm, they might yield a technique for solving problems in a way that nature has done in the past. 

The process of evolution operates on so-called chromosomes or genetic strings in a population. These 

chromosomes represent solution candidates for a specific problem at hand while their fitness indicates the 

valuation of their associated solution. During the execution time of a genetic algorithm, a primitive population 

of chromosomes will evolve by generating offspring and applying simple genetic operators such as crossover 

and mutation. The basic idea of the algorithm boils down to Darwin's concept of survival of the fittest: 

elementary DNA structures will start to dominate the population and will in the long run constitute 

indispensable genetic schemes to survive. Chromosomes lacking these fundamental DNA patterns have a low 

chance of survival and will eventually be overruled by better fitting competitors. It is exactly the disclosure of 

those vital DNA densities (called schemata) at which a genetic algorithm is aimed. The more these schemata 

are spread throughout the population, the more the algorithm will have converged to a set of high quality 

solutions. It is common to retain the best fitting chromosome at that point in time as a resolution to the 

problem at hand. 

3.2. Encoding of cutting proposals 

Careful examination of the LP formulation of the cutting problem reveals that the variables xijrs and Zj 

suffice to constitute feasible cutting proposals and to cover the entire solution space. Moreover, the 0/1 nature 

of the xijrs variables makes them very suitable to be encoded in a genetic string without further transformation. 

In order to get a full binary representation of an LP solution, the number of fabric layers for a particular 

pattern was translated into a binary notation. 

Research Report 1999 5 Information Systems Group 



A Hybrid Genetic A 19orithm for Solving a Layout Problem 
in the Fashion Industry 

Figure 3: Layout of a genetic string when I p I =3, I R I =2 and b=2 

1. Martens et al. 

Figure 3 visualises the above encoding strategy for a cutting problem with two patterns, three sizes and a 

maximum number of stencils on the cutting table of two. Reading the first pattern from the left to the right 

gives us the following values for the variables Xij" and Zj: 

x1l22 = x1l21 = 0 

x ll20 = I 
X2122 = 0 

X2121 = 1 

X2120 = 0 

X2111 = X21l0 = X2100 = 0 

X3122 = X3121 = x3\20 = 0 

X 3111 = 1 

X3\lO = X3100 = 0 

ZI = 10 

Table 2: Decoding of genetic material in Figure 3 

A potential drawback of the above encoding method lies in the fact the application of genetic operators to 

a particular chromosome may easily introduce infeasibility or solutions that violate the knapsack constraints. 

Therefore, during early phases of research, an alternative genetic algorithm was developed that operates on 

the general non-linear integer problem formulation (full integer encoding) avoiding the introduction of a 

network-knapsack approach. Although this full integer representation severely reduced the magnitude and the 

complexity of the active genetic universe, feasibility could still not always be guaranteed after applying 

crossover and mutation operators. Moreover, the heuristic, "ad hoc" peculiarity of the algorithm made it 

extremely difficult to defend the resulting technique as a genuine, authentic application of genetic algorithm 

theory. 

3.3. Algorithm design 

3.3.1. Fitness function 

Since a population of cutting proposals may consist of a mixture of feasible and infeasible solutions, 

careful design of the fitness function is imminent. In the literature, many approaches have yet been proposed 

to handle constraint breaching solutions in a penalty function [13,17,20,16]. It was believed for our GA to 
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work properly, penalties for violating problem constraints should be assigned in a way that no feasible 

chromosome can ever be outperformed by an infeasible cutting proposal. In light of this rationale, the 

following fitness/penalty (Pt) function was developed: 

fu = 2: MaX{d i - 2:( 2: ±s*xijrs *Zj],o}*pu (3) 
iEP jER fEB(i) ,=0 

fh = L,Max{zj-H,O}*Ph (4) 
jeR 

The fitness function in (1) is composed of four different sub-functions: a penalty function for violating 

network constraints (fn) , demand constraints (fu) and height boundaries (fh) and a penalty function for every 

article produced in excess of demand (fo)' Feasible solutions will have a single penalty term (fo)' while 

infeasible solutions will be penalised both for constraint violation and overproduction. In order to get a clear 

boundary between feasible and infeasible solutions, the penalty factors Pn' Pu and Ph have to be greater than 

the total maximum demand overshoot penalty (fo) a feasible solution can ever incur, which is given by 

( b H IRI- ~di). Hence, following the so-called minimum-penalty rule [14], penalty factors are established 

causing minimal gap between feasible and infeasible solutions: 

3.3.2. Crossover & mutation operators 

In light of classic genetic algorithm theory, we constructed both standard one- and two-point crossover 

functions as well as a mutation operator. Parents can be selected in our algorithm on a pure random basis or 
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using a roulette wheel strategy (RWS) that takes into account the fitness values of the chromosomes. Given a 

parental pair of chromosomes, the genetic operators below are executed with a certain probability. By varying 

this probability level for crossover and mutation separately, the genetic conduct of the algorithm can be 

customised during execution time. 

• one-point crossover: new chromosomes in the population are formed by exchanging segments of the 

parents. After determining a cutting point in a genetic string, segments beyond this point are swapped 

between parents to generate offspring. 

• two-point crossover: this type of crossover generates new chromosomes by interchanging pieces of 

parental chromosomes between two randomly chosen cut-off points. 

• mutation: the mutation operator scans every bit of a chromosome and inverts it with a certain probability. 

Notice that the above crossover and mutation operators were actually carried out in a double stage 

procedure. As a matter of fact, chromosomes were split up into a part containing only network related 

variables and another part containing binary encoded height variables. Genetic operators were then carried out 

separately on both parts using individual crossover and mutation rates. Although this approach is essentially 

non-universal in nature, it was necessary to ensure the possibility of swapping cross pattern xij,,-variables 

without exchanging the accompanying z;' s. Direct application of classic genetic operators on the initial 

encoding sequence in Figure 3 might in that way have caused some feasible solutions to be highly 

unreachable. 

3.3.3. Algorithm backbone 

Given the above design of the fitness function and the working method of genetic operators, the major 

backbone of our algorithm can be summarised as follows (depending on the offspring strategy applied): 
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set up an initial population of feasible chromosomes 
evaluate the population of chromosomes 
repeat 

select two chromosomes which function as parents 
apply genetic operators (crossover & mutation) to 

generate offspring 
replace the worst chromosomes in the population by 

the new children 
evaluate the population of chromosomes 

until a stopping condition is met 

set up an initial population of feasible chromosomes 
evaluate the population of chromosomes 
repeat 

for all the chromosome pairs in the population do 
begin 

select two chromosomes which function as 
parents 

apply genetic operators (crossover & mutation) 
to generate offspring 

add the offspring to a new population 
end 
replace the old population by the offspring 
evaluate the new population of chromosomes 

until a stopping condition is met 

J. Martens et al. 

Table 3: Genetic algorithm layout for steady state (top) and generation strategy (bottom) 

Adopting a steady genetic evolution strategy (top) means going through a number of iterations during 

which pairs of generated children replace the worst solutions in the population. Following a generation 

strategy (bottom) on the other hand implies creating an entire new population of solutions after which the 

original population is completely replaced by generated offspring. In order to maintain the best solutions in 

every popUlation, an elitist strategy is applied in case of the generation approach. 

3.4. Preliminary results 

We applied the above genetic algorithm to an extensive number of problem cases, including the example 

in Table 1. The major parameters we examined in our algorithm were the penalty factors in the fitness 

function, the popUlation size, the generation strategy, the parent selection method, the type of crossover 

applied and the crossover & mutation rates. 

Although it was mentioned yet feasibility of chromosomes after executing genetic operators is not 

guaranteed, it was hoped that an accurate arrangement of penalty factors, together with a well-thought design 

of other parameters would somehow suppress constraint-breaching solutions and enforce feasibility in the 

long run. However, after a profound period of intensive testing, it was concluded that no suitable parameter 

set up existed to make the algorithm work. We varied also a few other minor ad hoc parameters without any 

significant success. In most cases, intermediate populations consisted largely of adamantine infeasible 

solutions and only a few valid proposals far from the optimal cutting pattern. 
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In light of these preliminary results, it was believed that letting the algorithm drive itself through the space 

of feasible/infeasible solutions soon renders it completely adrift and meant putting too much of a burden on 

the penalty factor/parameter set up. In the next paragraph, the algorithm is therefore submit to a profound 

enhancement phase to improve the algorithm's performance and to reduce the probability of generating 

infeasible solutions. 

4. Genetic Enhancement 

4.1. Enforcing feasibility continuance in the network constraints 

4.1.1. Crossover design 

In the appendix, we derive probability expressions for maintaining a feasible network-knapsack flow after 

applying either one- or two-point crossover. The analysis is based on a non-converged, random population of 

feasible knapsack solutions (genetic heterogeneity) that are submitted to either a one- or a two-point crossover 

operator with equal probability. For a particular problem dimension (I R I, I p I and b), it can be proven the 

likelihood of preserving feasibility in the network constraints can be written as in the equation below (the 

reader is referred to the appendix for an explanation of the variables used). 

£ b.IRI.lpl = 

.!.[IRI + (lPH)IRI p+ ~ a(1tO +iti5)]+ 
2 A. A. ~ I I I I I 

(7) 

(IRI)( A. )2 
2 jR[ [IRI (lPI-l)IRI ~ ( ~ _;: )]2 

(
') -+---p+ ..:.,a j 1t jUj +1t j Uj + 
'" A. A. j~l 
2 

2 

For the problem dimensions in Table I (I R I =3, I P I =5 and b=4,), direct evaluation of (7) reveals the 

likelihood fb,IRI,IPI of preserving feasibility in the network constraints turns out to be no more than 20%. 

Figure 4 illustrates this feasibility maintenance rate for a set of varying problem dimensions, fixing the 

number of patterns I R I to a value of 3 and letting b and I P I vary on the interval [l,10). 
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Figure 4: Genetic feasibility continuance plane after applying crossover for varying problem dimensions 

Although it can be argued that infeasible solutions may return to the domain of feasible proposals after 

applying crossover or mutation, empirical results show this event to be extremely unlikely. An initial 

population of feasible solutions will hence be shrunk by an approximate factor of (l b,IRI,IPI r after going 

through t crossover iterations. 

In order to circumvent this infeasibility tendency, many authors in the literature apply some sort of repair 

strategy that fixes errors in a chromosome [1,9,2,18]. Although preliminary experiments with this repair 

strategy showed promising results, we felt that little authentic genetic behaviour was left. Indeed, for the 

problem dimensions in Table 1, a repair was needed in 80% of the cases and was basically carried out by 

scanning a chromosome for errors and fixing either the preceding or the following part in a complete random 

fashion. We therefore designed an intelligent one- and two-point crossover operator (Xn, & Xn2) that does 

guarantee feasible offspring and makes any repair action superfluous. Careful analysis of the genetic material 

reveals that the class of feasible knapsack solutions is completely covered when crossover points are 

positioned only after a collection of xij,,-variables for a particular size. Moreover, when a crossover point (cp) 

is chosen among a set of points at which the network state (ie. the total flow in cp) is identical across both 

parents, an intelligent crossover operator comes out that takes into account the idiosyncrasy of the problem at 

issue. The figure below illustrates the working method of this crossover for the two-point crossover scenario, 

taking into account that the network flow at both crossover points must be equal across both parents. 

Research Report 1999 

parent I 

parent 2 
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Figure 5: lllustration of the intelligent two-point crossover operator 
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Although the above crossover operator is basically non-universal in nature, we feel that it is much more 

suitable from a schemata point of view and that it is capable of exchanging fundamental genetic structures 

without loosing essential genetic granularity power. As a matter of fact, elementary genetic schemata for the 

problem at hand are strings of size related bits that represent a number of stencils laid for a particular amount 

of free space left on the cutting table. Genetic evolution comes in this case then down to the swapping of size 

related genetic material across chromosomes instead of incoherent individual bits. 

4.1.2. Mutation design 

While the above crossover design warrants feasibility maintenance, the application of mutation may still 

rupture the network flow. In the appendix, the class of mutation scenarios that preserve feasibility with 

respect to the network constraints is defined. The analysis comes down to the disclosure of the fact that 

mutations on feasible chromosomes have to take place in pairs within a particular size. Moreover, since 

mutating bits in a particular size boils down to altering the number of stencils, mutations should always 

proceed in strings (0') of length t (t >= 2) of consecutive sizes in order to preserve the total flow through 0'. 

Taking into account feasible mutation threads can be formed by combining several 0" s, the total number of 

allowable mutation scenarios can be written as in the equation below (the reader is again referred to the 

appendix for an explanation of the variables). 

Consequently, we designed an intelligent mutation operator (Il") that randomly carries out a mutation 

scenario of M. The figure below illustrates the application of this intelligent mutation operator when 

mutations take place in strings 0', and 0'2 within patternj. 
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Figure 6: Illustration of the intelligent mutation operator 
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Although a similar strategy as above could now be advocated for managing feasibility in the height 

constraints, we felt that the translation of integer height variables into a binary representation, followed by the 

application of a parallel genetic algorithm with intelligent crossover or mutation operators would be an 

inefficient way of determining height variables for a particular chromosome. Moreover, careful examination 

of the problem at hand reveals that the algorithm's search space is primarily set up by the network related Xij"· 

variables. As a matter of fact, it is straightforward to associate optimal or near optimal numbers of stack 

layers (zj-variables) with a particular network flow by setting all z/ s to their maximum value and 

decrementing them step by step until one or more demand constraints become violated. Hence, instead of 

developing a parallel genetic algorithm to work on the height variables, a local height optimisation strategy 

(11) was chosen that assigns stack variables Zj to every chromosome in the population. 

4.3. Heuristic demand feasibility operator 

The genetic algorithm so far developed operates within the domain of feasible solutions with respect to 

both network and height constraints. Although intelligent crossover and mutation operators could have been 

designed coercing the algorithm to satisfy demand constraints as well, it was believed this would severely 

have lessened the number of feasible genetic progress pathways and have endangered the algorithm to strand 

early in local minima. 

Extensive initial experiments revealed the genetic algorithm gives favourable results, although it was felt 

both the execution time and a regular reach of the optimal solution still needed improvement. The table below 

depicts typical results that were obtained by applying our GA to the problem case in Table 1. In some runs, it 

appears that after many iterations, the algorithm was still navigating through solutions that violated the 

demand constraints. Also, only once the optimal cutting proposal to the problem at issue was found. 

Best 
2 

Solution 

Avg. 
35.1 2568 26.3 89 33.2 32.1 2660 

Penalty 

Table 4: Best solution and average penalty for seven runs on Table 1 

To enforce the algorithm to produce only acceptable cutting stock proposals during the entire genetic 

evolution path, a local heuristic network optimisation (v) was carried out that rearranges the flow through the 

network until a solution is achieved that satisfies the demand constraints as well. Chromosomes are altered 

through a cascade of flow redirections using the following heuristic procedural network modification: 
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try to satisfy demand by increasing the number of layers 
while demand is not satisfied do 
hegin 

end 

either try to satisfy demand by filling empty places on the 
cutting table 

either switch stencils across sizes within a pattern 
as follows 

select randomly a demand breaching size s 
select randomly a demand overshooting size s' 
decrement the number of stencils for s I in a random 

pattemp 
increment the number of stencils for s in p 

end 'as follows' 
adjust the sets of demand breaching and demand 

overshooting sizes 

delete any superfluous stencil within a particular pattern 

Table 5: Heuristic network flow redirection 

J. Martens et al. 

Every chromosome that goes through the above heuristic feasibility operator is guaranteed to have a network 

flow for which an accompanying set of feasible fabric layers exists (zrvariables) that renders the entire 

chromosome feasible with respect to all the problem constraints. 

5. Results 

5.1. Parameter setup 

5.1.1. Population size, replacement rate & number of generations 

A well-thought population size (K) is imminent since a population too small may leave vast areas of the 

solution space uncovered, while a population too large soon demands a tremendous amount of processor time. 

Also, the algorithm should run for an adequate number of generations (t) to allow for a satisfactory level of 

convergence. Concerning the percentage of chromosomes to be generated every iteration (r), a combination of 

a steady state generation approach and a delete all strategy with elitism is advocated. In fact, initial 

experiments revealed it is desirable to replace only a few chromosomes by offspring to allow smooth and 

regular convergence while more replacements should take place to increase the algorithm's performance. 

Anyway, bad specification of K, t and r may jeopardise both the coverage of the solution space and the 

algorithm's overall speed of convergence. 

It is therefore believed that a useful lower bound relationship between K, t and r can be defined by 

ensuring that the number of feasible network flows for a particular pattern is covered by generated offspring. 

Straightforward calculation shows the total number of feasible network flows to be: 
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(9) 

Hence, following the above rationale, any parameter setup of 1(, t and r should satisfy: 

nfs ::; tr K (10) 

5.2. Crossover and mutation strategy 

1. Martens et al. 

Extensive preliminary testing indicated crossover is mainly responsible for overall population 

convergence during early phases of evolution. It is therefore preferable to hold mutation as low as possible 

not to disturb this crossover driven genetic population improvement. However, after some point in time, 

crossover seems to have shaped fundamental schemata that appear in many solutions, as indicated by the 

figure below: 

0.9 

0.6 
percentage flow 

~ . 4 
0.6" ~i 
0.5 ~;'~.~--- ... --\:./ •.. ~/j 
0.4 

0.3 

0.2 

0.1 

average core fitness 

o~--__ ----__ --__ --__ --~ 
o 20 40 ., eo 100 

Figure 7: Crossover driven schemata density evolution and average core fitness 

Figure 7 depicts a typical percentage flow of chromosome pairs in the steady core that have an equal number 

of free stencil positions at particular stages in the knapsack network over several generations. The figure is 

based on the problem dimensions of Table 1; values are shown for all patterns and are averaged across sizes 

within a pattern .. The average core fitness values were calculated using the following scaling function (K 

represents the core size): ~fPf%(i<:) . 
..!.Pf,(i<:) K, 

Although at some points in time a minor level of diversity is reappearing, it is clear that fundamental 

network states (schemata) are distributed across the entire population and that crossover in the long run will 

merely swap these schemata across parents without little additional convergence effect. At that moment, it is 

highly preferable to reintroduce variety in the entire population by mutation. Hence, in order for mutation and 

crossover to be effective, it was concluded that: 
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• the crossover rate should be as high as possible when no major convergence has occurred yet 

• the mutation rate should depend on a measure of convergence 

• mutation should proceed through the entire population 

• mutations should take place within those sizes that contribute most to the penalty function 

Let now Sdi(t) stand for the schemata density curve as pictured in Figure 7 for pattern j at generation t, then 

a measure of population convergence within pattern j is given by estimating lasdJ(%:I. Modelling the fact 

mutation should be more active in penalty contributing sizes can be done by defining a mutation rate per size 

and letting the rate vary with the size's overall core total overproduction share, which is given by: 

(11) 

Extensive preliminary experiments revealed a scaling factor was needed in combination with the above 

expression to define an efficient mutation and crossover rate as follows: 

-1.10 ---
m(i,j) = e a (12) [ 

,laSdi(%:I] 

1 iPiiRi .. 
cr =1--

1 
I-I ILLm(I,J) (13) 

P R i=lj=l 

Chromosomes in the entire population will thus be submitted to a mutation process that scans the genetic 

material across sizes (i) and patterns (j) and initiates a particular mutation scenario involving size i within 

pattern j with a probability equal to m(i,j). Also, offspring is generated by applying a crossover rate c, that is 

inversely proportional to the average m(i,j). 

5.3. Major results and comparison to other techniques 

We compared the performance of our GA to both the LP formulation of the problem as discussed in 

paragraph 2.2 (LPl) and two alternative formulations that were recently proposed by [6] (LP2 & LP3). The 

table below gives an overview of all the test cases used with their optimal solution (minimum excess). 
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Case Parameters A vai1able Demand Data 
Nr. b iRi ipi H 
1 4 3 5 35 54 84 91 60 29 
2 4 3 5 35 25 70 63 54 39 
3 4 3 5 35 33 82 77 62 34 
4 4 3 5 35 74 64 28 34 59 
5 4 3 5 35 21 54 61 5 41 
6 4 3 5 35 21 54 61 15 41 
7 5 3 6 10 8 12 14 23 16 6 
8 5 3 4 50 78 133176 96 
9 5 3 6 50 44 58 68 ]]9 78 34 
10 3 4 6 50 37 48 58 63 44 29 
]] 5 4 6 10 19 25 40 43 31 17 
12 5 4 6 50 98 145 180207 167 83 
13 6 5 6 50 115 152 44 284196135 
14 6 5 7 50 120 70 130 170 208 50 100 
15 6 6 7 35 59 100 103 73 121 52 35 
16 6 6 8 35 112 142 127 72 71 56 102 51 
17 8 6 8 35 58 71 106311 208 101161 70 

Table 6: Characteristics of test cases used 

1. Martens et al. 

Min. 
Excess 

1 
1 
1 
1 
1 
2 
0 
0 
1 
0 
5 
0 
0 
0 
0 
0 
0 

The genetic algorithm applied on a population of chromosomes (c) and a steady core (K) at time t with 

preservence of the best solution (c~) can now be jotted down as: 

'lfCl"K:C,+1 =11ovo{~m(i,j)l1n oCr{Xnl /\Xn,}(C,.§,)} 
I,J 

'lfc E K \ {cn: c,+1 = 11 0 v o {rm(i,j) I1n(C,)} (14) 
I,J 

We defined the performance of the above GA by executing 10 independent runs for each case and by 

calculating the average time the algorithm took to reach the optimal solution, If the optimal cutting layout was 

not found, the time it took the algorithm to reach the best cutting pattern in the population was taken into 

consideration. The table below gives an overview of the initial problem cases tested together with their 

optimal solution (minimum excess) and the execution times for LPl-3 and the genetic algorithm. Also, the 

table depicts the best solution the GA found in 10 runs and an accuracy level as the percentage of runs that 

reached the optimal cutting pattern, Values between parentheses indicate best solutions if the optimal solution 

wasn't found, ego in case 4, 2 runs produced a sub-optimal solution with an excess of 2 articles. 
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Case Min. Execution Times 
Exc. 

LP1 LP2 LP3 
1 1 1B:32 2:19 0:56 
2 1 3B:27 6:16 3:51 
3 1 20:04 4:00 2:01 
4 1 35:29 4:39 4:04 

5 1 41:12 5:56 2:0B 
6 2 7:41 4:35 5:33 
7 0 > lOh 31:53 >1h 
B 0 3:40 0:35 5:04 
9 1 >40h =2h > 15h 

10 0 56:41 13:44 5:31 

11 5 >40h 26:00 >llf2h 
12 0 >40h 29:12 36:43 

GA Accu~ 

best racy 
GA 
< 1, 1 1 
0:05 1 1 
0:05 1 1 
0:09 1 O.B 

(2x2) 
O:OB 1 1 
0:03 2 1 
0:03 0 1 
O:OB 0 1 
0:11 1 O.B 

(2x2) 
0:13 0 0.4 

(6x1) 
0:00 5 1 
0:16 0 0.7 

(3x5) 

Table 7: GA versus LPl-3 performance (minutes:seconds) 

1. Martens et al. 

The table above was constructed by generating a maximum of 5000 new chromosomes, using the 

parameters r=25%, K=100, t=200, well satisfying the lower bound relationship (10). For the LP models, a 

Pentium II 233Mhz was available, while the genetic algorithm ran on a Pentium II 400Mhz station. For 

comparative reasons, one can multiply the execution times of the GA by a factor of approximately 312 to 

obtain an estimate of results that would have been achieved on a 233Mhz station. 

The conclusions that can be drawn from Table 7 are twofold. First, the performance of the GA is severely 

better than any of the LP formulations presented. The algorithm finds optimal or near optimal solutions in a 

time span far narrower than any LP model. It should be mentioned however that the execution times for LP 

formulations involve a large amount of time to prove the superiority of a solution that was found much earlier. 

On the other hand, direct comparison of execution times between an LP model and the GA can be done for 

cases that have an optimal solution with no overproduction (zero excess). Hence, for cases 7,8,10 & 12, it still 

took the LP models a significant larger amount of time to actually reach the optimal solution of zero excess. 

In order to circumvent the possible blurring effect of comparing results for cases with a non-zero 

overproduction an additional set of test cases was designed. The table below contains the execution times of 5 

new test cases for the second LP model (LP2 performs best for complex cases) and the genetic algorithm. The 

results of Table 8 were achieved using customised values of K, t and r (all execution times are 400Mhz 

results). Combining the results of Table 7 and Table 8 for cases with zero excess, it is apparent the GA needs 

a significant lower amount of time to reach the optimal cutting pattern compared to any of the LP models. 

Also, for the most complex cases (16 and 17), it was found it took LP2 more than a full day of processing to 

come up with a feasible solution. 
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Case Min. Execution Times 
Exc. 

K l f LP2 

13 0 100 200 25% ,,2h 

14 0 100 200 25% > 24h* 
15 0 100 200 25% > 24h* 
16 0 200 200 25% > 24h* 

17 0 200 400 25% > 24h* 

1. Martens et al. 

GA Accu-
best racy 

GA 

0:50 0 0.6 
(4x1) 

0:32 0 1 
0:50 0 1 
2:48 0 0.6 

(4x1) 
7:16 0 1 

Table 8: Results on additional zero~excess cases (minutes:seconds, * = execution was halted after indicated time) 

A second remark that has to be made about the results in Table 7 concerns the fact for some cases the 

optimal cutting pattern is not always reached by the GA. Indeed, for cases 4, 9, 10 and 12, the accuracy rating 

drops to a somewhat mediocre level of about 60%. It is believed however the accuracy is heavily dependent 

on the parameter setup of K, t and r. Therefore, we submitted the former cases again to our GA removing the 

upper limit on t, setting r to 25% and K to 100. The results in the table below indicate the average execution 

times (10 runs per case) are still lower compared to any of the LP models. In most runs, the optimal solution 

was found in less than 2 minutes. However, for case 10, it took the GA in a particular run more than 7 minutes 

to find the optimal solution. Leaving the removal of the upper limit, we therefore also increased both the 

population size and the replacement rate. As can be seen in Table 9, GA average execution times are 

improved for all cases while maximum times are severely reduced. Based on the results in Table 9 it is 

conceived careful arrangement of K, t and r is imminent since these parameters play an important role in the 

overall performance of the genetic algorithm. 

Case Rep. Population Average Time Max Time 
Rate (f) Size (K) 

4 25% 100 0:22 1:07 
9 25% 100 0:36 1:42 
10 25% 100 2:08 7:06 
12 25% 100 1:21 3:10 
4 50% 200 0:08 0:13 
9 50% 200 0:17 0:41 
10 50% 300 1:07 5:50 
12 50% 300 0:25 1:15 

Table 9: Execution times removing upper limit on 1 for varying 1C and r 

6. Conclusions and Future Research 

In this paper, we constructed a powerful hybrid genetic algorithm for solving a layout problem in the 

Belgian fashion industry. Through a set of initial experiments, it was found a universal GA approach yields 

less than satisfactory results. Further analysis indicated an effective constraint handling technique was 

indispensable to improve the algorithm's performance. In light of these findings, intelligent schemata based 

genetic operators were constructed and implemented together with a local optimisation strategy and a 

heuristic feasibility operator. These enhancements severely reduced the active genetic universe and were able 
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to confine the algorithm to the space of feasible solutions. Moreover, an intelligent variable mutation and 

crossover rate scheme was used to allow for rapid convergence during early phases of evolution without loss 

of essential genetic diversity. Finally, computational results indicated the GA was considerably faster than 

any LP model yet developed. 

As a result of this study, many future research activities can be carried out on the problem at hand. It 

might be interesting to investigate how the GA can effectively be used as an initialisation procedure for any of 

the LP models. On the other hand, research can be carried out on how the algorithm can decide itself about 

good (feasible) crossover points by inductive learning [21] as an alternative to the peculiar design strategy 

applied in this article. Also, in light of recent activities [11], the fruitfulness of applying co-evolutionary 

genetic algorithm techniques for handling problem constraints can be analysed. 
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8. Appendix 

8.1. Crossover analysis 

8.1.1. One-point crossover 

Let EI and E, denote the events of maintaining solutions that satisfy the flow constraints after applying 

respectively one- and two-point crossover. Careful analysis of a genetic structure reveals that feasibility 

continuance depends heavily on the position of the crossover point(s) (cp(s)) within the network related 

variables Xii'" For one-point crossover, the following cases can be identified: 

i. cp after pattern j: feasibility is always guaranteed when crossover takes place right after a pattern since 

network variables are independent across patterns. 

2. cp after size i within pattern j, i;e/P/: feasibility is only maintained if the number of free stencil positions at 

the crossover point is identical in both parental chromosomes. Assuming a heterogeneous, non-converged 

genetic popUlation, this number will be unifonn on [O,b] and hence will be equal across both parents with 

probability p = _( 1 ). 
b+l 

3. cp within size i within pattern j: feasibility can only be preserved if the crossover point is positioned ahead 

of the first or behind the last non-zero Xii" variable within size i across both parents. Assuming genetic 

heterogeneity, the probability the crossover point falls ahead of the first non-zero Xii" within size i can be 

written as: 
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E[ # of cp' s before the first non - zero Xijrs within size i 1 
number of cp's within size i 

1. Martens et al. 

After some calculation, the probability of performing a crossover preceding the first significant Xijrs within 

size i equals: 

The probability then the crossover point falls after the last non-zero Xij" within size i reads after some 

calculation: 

(;;+1 / 2 2. (Si +1-k)(2(k-l)+I) (Si +1) 
ii: (r.) = """k~::.!...I ________ _ 

1 ~l Si 

In both foregoing cases, the application of the crossover operator will only hold feasibility if the number 

of free stencil positions is identical at the crossover point across both parents. 

Due to the network-knapsack formulation of the problem, the probability of having an equal number of 

remaining stencil positions at the crossover point, is size dependent. Following this rationale, peE,) can then 

be written as an aggregate of three terms corresponding to the above scenarios, where the following matrix 

notation was used (/.. represents the total number of network related bits in a chromosome): 
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peE ) = IRI + (lPI-l)IRI p+ ~a(1to +ft.8) (15) 
I" " i=! I I I I I 

8.1.2. Two-point crossover 

J. Martens et al. 

A two-point crossover operates by randomly selecting two crossover points (CPI & CP2) and by swapping 

the interlaying parts of the parental chromosomes. Hence, a two-point crossover can be regarded as a "virtual 

sequence" of two one-point crossovers. Depending on CPI & CP2' we have: 

1. CPI & CP2 within pattern j & j', j;ej': feasibility is maintained if both imaginary one-point crossovers 

preserve feasibility. 

2. CPI & CP2 within pattern j: a distinction must be made between a feasible and an infeasible result after 

applying the first imaginary one-point crossover. In case the intermediary result is feasible, feasibility will 

only be further maintained if the number of remaining stencil positions at CP2 is equal, which occurs with 

probability p = -( I ) where ~ stands for the number of free positions at CPl' In case the intermediary 
~+I 

result is infeasible however, "undoing" the action of the first crossover can only restore feasibility. 

Let 'I' stand for the relative position of CPI in pattern j and i for the size in which CPI is located (i is 

completely determined by '1'). Let 'I' and ~ be independent for i > I (genetic heterogeneity) and let ro be the 

( 
i b+! J number of remaining bits within size i,ro=):: I,k -'1'-1. If one defines the set of allowable ~'s for a 

i=l k=l+bS il 

particular 'I' as ~('I') then P(E2) can be written as in (16), using the matrix notation below: 

flt = P(Etl 
4xl 
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A./IRI-'I' 
IPI-i 

A./IRI-'I' 
OJ 

A./IRI-'I' 
(
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8.2. Mutation analysis 

"JSi )(1-0i (A./IR~ - 'V ) 

~ = (1-"Jsi)-iti(Si))(A./I~_'V) 
itJsi)(1-8i) 

J. Martens et al. 

In order to maintain feasibility in a chromosome during mutation, the xij,,-variables have to be modified in 

pairs at the bit level within a specific size. Moreover, the network-knapsack formulation of the problem 

implies that mutations have to take place in strings of consecutive sizes cr. For a particular cr, a feasible 

mutation comes down to a rearrangement of the number of stencils for sizes within cr. Let now L t , stand for 

the set of tk (tk ~ 2) consecutive sizes (the network formulation implies there is one exception for the tk -

constraint: L t , = {IPI} fortk=l) and let etk(Yk) stand for the number of rearrangements when Yk stencils are 

laid in a string of length tk. For an even number of mutations i, feasibility maintenance boils down to 

combining elements cr tk of several sets L t" satisfying L tk = i/2, and by rearranging the number of stencils 
k 
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in eachcr'k' taking into account the total flow in & out ofcr'k' Let now X L, stand for the Cartesian product 
k=l k 

j J -
of sets L, ' enforcing X L, n X L, == 0, j ¢ j, then it follows that the number of feasible mutation 

k k=l k k=l k 

scenarios IMI can be written as in (17). 
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