135 research outputs found

    Radial vibration measurements directly from rotors using laser vibrometry: The effects of surface roughness, instrument misalignments and pseudo-vibration

    Get PDF
    Laser Doppler vibrometry (LDV) offers an attractive solution when radial vibration measurement directly from a rotor surface is required. Research to date has demonstrated application on polished-circular rotors and rotors coated with retro-reflective tape. In the latter case, however, a significant cross-sensitivity to the orthogonal radial vibration component occurs and post-processing is required to resolve individual radial vibration components. Until now, the fundamentally different behaviour observed between these cases has stood as an inconsistency in the published literature, symptomatic of the need to understand the effect of surface roughness. This paper offers the first consistent mathematical description of the polished-circular and rough rotor behaviours, combined with an experimental investigation of the relationship between surface roughness and cross-sensitivity. Rotors with surface roughness up to 10 nm satisfy the polished-circular rotor definition if vibration displacement is below 100% beam diameter, for a 90 μm beam, and below 40% beam diameter, for a 520 μm beam. On rotors with roughness between 10 nm and 50 nm, the polished-circular rotor definition is satisfied for vibration displacements up to 25% beam diameter, for a 90 μm beam, and up to 10% beam diameter, for a 520 μm beam. As roughness increases, cross-sensitivity increases but only rotors coated in retro-reflective tape satisfied the rough rotor definition fully. Consequently, when polished-circular surfaces are not available, rotor surfaces must be treated with retro-reflective tape and measurements post-processed to resolve individual vibration components. Through simulations, the value of the resolution and correction algorithms that form the post-processor has been demonstrated quantitatively. Simulations incorporating representative instrument misalignments and measurement noise have enabled quantification of likely error levels in radial vibration measurements. On a polished-circular rotor, errors around 0.2% for amplitude and 2 mrad for phase are likely, rising a little at the integer orders affected by pseudo-vibration. Higher pseudo-vibration levels and the need for resolution increase errors in the rough rotor measurements, especially around the synchronous frequency where errors reach 20% by amplitude and 100 mrad for phase. Outside a range of half an order either side of first order, errors are ten times lower and beyond fifth order errors are similar to those for the polished-circular rotor. Further simulations were performed to estimate sensitivities to axial vibration, speed variation and bending vibrations. © 2012 Elsevier Ltd

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Dispersal and reproductive careers of male mountain gorillas in Bwindi Impenetrable National Park, Uganda

    Get PDF
    Dispersal is a key event in the life of an animal and it influences individual reproductive success. Male mountain gorillas exhibit both philopatry and dispersal, resulting in a mixed one-male and multimale social organization. However, little is known about the relationship between male dispersal or philopatry and reproductive careers in Bwindi mountain gorillas. Here we analyze data spanning from 1993 to 2017 on social groups in Bwindi Impenetrable National Park, Uganda to examine the proportion of males that disperse, age of dispersal, pathways to attaining alpha status, fate of dispersing males and philopatric males, and male tenure length as well as make comparisons of these variables to the Virunga mountain gorilla population. We report previously undocumented cases of dispersal by immature males and old males and we also observed the only known case of a fully mature male immigrating into a breeding group. We used genetic tracking of known individuals to estimate that a minimum of 25% of males that disperse to become solitary males eventually form new groups. No differences were found between the Bwindi and Virunga population in the age of male dispersal, the proportion of males that disperse, the age of alpha male acquisition, and dominance tenure length. The lack of differences may be due to small sample sizes or because the observed ecological variability does not lead to life history differences between the populations. Males in both populations follow variable strategies to attain alpha status leading to the variable one-male and multimale social organization, including dispersal to become solitary and eventually form a group, via group fissioning, usurping another alpha male, or inheriting the alpha position when a previous group leader dies

    Variation within and between Closely Related Species Uncovers High Intra-Specific Variability in Dispersal

    Get PDF
    Mounting evidence shows that contrasting selection pressures generate variability in dispersal patterns among individuals or populations of the same species, with potential impacts on both species dynamics and evolution. However, this variability is hardly considered in empirical works, where a single dispersal function is considered to adequately reflect the species-specific dispersal ability, suggesting thereby that within-species variation is negligible as regard to inter-specific differences in dispersal abilities. We propose here an original method to make the comparison of intra- and inter-specific variability in dispersal, by decomposing the diversity of that trait along a phylogeny of closely related species. We used as test group European butterflies that are classic study organisms in spatial ecology. We apply the analysis separately to eight metrics that reflect the dispersal propensity, the dispersal ability or the dispersal efficiency of populations and species. At the inter-specific level, only the dispersal ability showed the signature of a phylogenetic signal while neither the dispersal propensity nor the dispersal efficiency did. At the within-species level, the partitioning of dispersal diversity showed that dispersal was variable or highly variable among populations: intra-specific variability represented from 11% to 133% of inter-specific variability in dispersal metrics. This finding shows that dispersal variation is far from negligible in the wild. Understanding the processes behind this high within-species variation should allow us to properly account for dispersal in demographic models. Accordingly, to encompass the within species variability in life histories the use of more than one value per trait per species should be encouraged in the construction of databases aiming at being sources for modelling purposes

    Home Range Use and Movement Patterns of Non-Native Feral Goats in a Tropical Island Montane Dry Landscape

    Get PDF
    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities

    Do Dispersing Monkeys Follow Kin? Evidence from Gray-cheeked Mangabeys (Lophocebus albigena)

    Get PDF
    Among social vertebrates, immigrants may incur a substantial fitness cost when they attempt to join a new group. Dispersers could reduce that cost, or increase their probability of mating via coalition formation, by immigrating into groups containing first- or second-degree relatives. We here examine whether dispersing males tend to move into groups containing fathers or brothers in gray-cheeked mangabeys (Lophocebus albigena) in Kibale National Park, Uganda. We sampled blood from 21 subadult and adult male mangabeys in 7 social groups and genotyped them at 17 microsatellite loci. Twelve genotyped males dispersed to groups containing other genotyped adult males during the study; in only 1 case did the group contain a probable male relative. Contrary to the prediction that dispersing males would follow kin, relatively few adult male dyads were likely first- or second-degree relatives; opportunities for kin-biased dispersal by mangabeys appear to be rare. During 4 yr of observation, adult brothers shared a group only once, and for only 6 wk. Mean relatedness among adult males sharing a group was lower than that among males in different groups. Randomization tests indicate that closely related males share groups no more often than expected by chance, although these tests had limited power. We suggest that the demographic conditions that allow kin-biased dispersal to evolve do not occur in mangabeys, may be unusual among primates, and are worth further attention

    Male-Mediated Gene Flow in Patrilocal Primates

    Get PDF
    BACKGROUND: Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS: Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE: The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos
    corecore