32 research outputs found

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    Hippocampal group III mGlu receptor mRNA levels are not altered in specific mouse models of stress, depression and antidepressant action.

    No full text
    The neurotransmitter glutamate is increasingly being implicated as playing a role in the molecular pathology underlying depression. The group III family of metabotropic glutamate (mGlu) receptors (mGlu(4,) mGlu(7) and mGlu(8) receptors) remains the most poorly investigated of all glutamate receptors in this regard, despite early research efforts showing that they may be major players in stress-induced pathology, genetic vulnerability to the onset of depression and in the action of pharmacotherapies. To redress this deficit, we investigated whether the mRNA levels of the group III mGlu receptors display sensitivity to the preclinical stress models' chronic immobilisation stress (CIS) in BALB/c mice and chronic social defeat in BALB/c and C57BL/6j mice. We also investigated the potential of the mood stabiliser lithium to reverse any stress-induced alterations to expression levels of the group III mGlu receptors. Furthermore, we investigated if changes to hippocampal group III mGlu receptors are involved in the augmentation strategy of administering lithium in conjunction with the tricyclic antidepressant desipramine using BALB/c mice. Finally, we investigated whether differences in hippocampal group III mGlu receptors exist between the non-helpless NH/Rouen mouse line and the helpless H/Rouen line. We found no changes to hippocampal group III mGlu receptor expression in any of the stress models investigated, the H/Rouen mouse genetic model of depression or due to pharmacological treatment. This indicates that these receptors may not be involved in the manifestation of behavioural and physiological changes observed in these models and furthermore, may not contribute to the therapeutic mechanisms of the above mentioned pharmacotherapies
    corecore