42 research outputs found

    RNase E and the High-Fidelity Orchestration of RNA Metabolism.

    Get PDF
    The bacterial endoribonuclease RNase E occupies a pivotal position in the control of gene expression, as its actions either commit transcripts to an irreversible fate of rapid destruction or unveil their hidden functions through specific processing. Moreover, the enzyme contributes to quality control of rRNAs. The activity of RNase E can be directed and modulated by signals provided through regulatory RNAs that guide the enzyme to specific transcripts that are to be silenced. Early in its evolutionary history, RNase E acquired a natively unfolded appendage that recruits accessory proteins and RNA. These accessory factors facilitate the activity of RNase E and include helicases that remodel RNA and RNA-protein complexes, and polynucleotide phosphorylase, a relative of the archaeal and eukaryotic exosomes. RNase E also associates with enzymes from central metabolism, such as enolase and aconitase. RNase E-based complexes are diverse in composition, but generally bear mechanistic parallels with eukaryotic machinery involved in RNA-induced gene regulation and transcript quality control. That these similar processes arose independently underscores the universality of RNA-based regulation in life. Here we provide a synopsis and perspective of the contributions made by RNase E to sustain robust gene regulation with speed and accuracy.Wellcome Trus

    Suppressor of clathrin deficiency (Scd6)An emerging RGG-motif translation repressor

    No full text
    Translation control plays a key role in variety of cellular processes. Translation initiation factors augment translation, whereas translation repressor proteins inhibit translation. Different repressors act by distinct mechanisms to accomplish the repression process. Although messenger RNAs (mRNAs) can be repressed at various steps of translation, most repressors have been reported to target the initiation step. We focus on one such translation repressor, an Arginine-Glycine-Glycine (RGG)-motif containing protein Scd6. Using this protein as a model, we present a discourse on the known and possible functions of this repressor, its mechanism of action and its recently reported regulation. We suggest a case for conservation of the mechanism employed by Scd6 along with its regulation in orthologs, and propose that Scd6 family of proteins will be an ideal tool to understand translation control and mRNA fate decision mechanisms across biological systems. This article is categorized under: Translation > Translation Regulation RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexe

    RGG motif proteins: Modulators of mRNA functional states

    No full text
    corecore