163 research outputs found

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    The power to detect artificial selection acting on single loci in recently domesticated species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of aquaculture species are subjected to artificial selection in systematic breeding programs. Rapid improvements of important commercial traits are reported, but little is known about the effects of the strong directional selection applied, on gene level variation. Large numbers of genetic markers are becoming available, making it feasible to detect and estimate these effects. Here a simulation tool was developed in order to explore the power by which single genetic loci subjected to uni-directional selection in parallel breeding populations may be detected.</p> <p>Findings</p> <p>Two simulation models were pursued: 1) screening for loci displaying higher genetic differentiation than expected (high-F<sub>ST </sub>outliers), from neutral evolution between a pool of domesticated populations and a pool of wild populations; 2) screening for loci displaying lower genetic differentiation (low-F<sub>ST </sub>outliers) between domesticated strains than expected from neutral evolution. The premise for both approaches was that the isolated domesticated strains are subjected to the same breeding goals. The power to detect outlier loci was calculated under the following parameter values: number of populations, effective population size per population, number of generations since onset of selection, initial F<sub>ST</sub>, and the selection coefficient acting on the locus. Among the parameters investigated, selection coefficient, the number of generation since onset of selection, and number of populations, had the largest impact on power. The power to detect loci subjected to directional in breeding programmes was high when applying the between farmed and wild population approach, and low for the between farmed populations approach.</p> <p>Conclusions</p> <p>A simulation tool was developed for estimating the power to detect artificial selection acting directly on single loci. The simulation tool should be applicable to most species subject to domestication, as long as a reasonable high accuracy in input parameters such as effective population size, number of generations since the initiation of selection, and initial differentiation (F<sub>ST</sub>) can be obtained. Identification of genetic loci under artificial selection would be highly valuable, since such loci could be used to monitor maintenance of genetic variation in the breeding populations and monitoring possible genetic changes in wild populations from genetic interaction between escapees and their wild counterpart.</p

    Levels and Patterns of Nucleotide Variation in Domestication QTL Regions on Rice Chromosome 3 Suggest Lineage-Specific Selection

    Get PDF
    Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL) mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa—indica and tropical japonica—as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups

    Domestication Syndrome in Caimito (Chrysophyllum cainito L.): Fruit and Seed Characteristics

    Get PDF
    Domestication Syndrome in Caimito (Chrysophyllum cainitoL.): Fruit and Seed Characteristics: The process of domestication is understudied and poorly known for many tropical fruit tree crops. The star apple or caimito tree (Chrysophyllum cainito L., Sapotaceae) is cultivated throughout the New World tropics for its edible fruits. We studied this species in central Panama, where it grows wild in tropical moist forests and is also commonly cultivated in backyard gardens. Using fruits collected over two harvest seasons, we tested the hypothesis that cultivated individuals of C. cainito show distinctive fruit and seed characteristics associated with domestication relative to wild types. We found that cultivated fruits were significantly and substantially larger and allocated more to pulp and less to exocarp than wild fruits. The pulp of cultivated fruits was less acidic; also, the pulp had lower concentrations of phenolics and higher concentrations of sugar. The seeds were larger and more numerous and were less defended with phenolics in cultivated than in wild fruits. Discriminant Analysis showed that, among the many significant differences, fruit size and sugar concentration drove the great majority of the variance distinguishing wild from cultivated classes. Variance of pulp phenolics among individuals was significantly higher among wild trees than among cultivated trees, while variance of fruit mass and seed number was significantly higher among cultivated trees. Most traits showed strong correlations between years. Overall, we found a clear signature of a domestication syndrome in the fruits of cultivated caimito in Panama

    Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent

    Get PDF
    We used supernetworks with datasets of nuclear gene sequences and novel markers detecting retrotransposon insertions in ribosomal DNA loci to reassess the evolutionary relationships among tetraploid wheats. We show that domesticated emmer has a reticulated genetic ancestry, sharing phylogenetic signals with wild populations from all parts of the wild range. The extent of the genetic reticulation cannot be explained by post-domestication gene flow between cultivated emmer and wild plants, and the phylogenetic relationships among tetraploid wheats are incompatible with simple linear descent of the domesticates from a single wild population. A more parsimonious explanation of the data is that domesticated emmer originates from a hybridized population of different wild lineages. The observed diversity and reticulation patterns indicate that wild emmer evolved in the southern Levant, and that the wild emmer populations in south-eastern Turkey and the Zagros Mountains are relatively recent reticulate descendants of a subset of the Levantine wild populations. Based on our results we propose a new model for the emergence of domesticated emmer. During a pre-domestication period, diverse wild populations were collected from a large area west of the Euphrates and cultivated in mixed stands. Within these cultivated stands, hybridization gave rise to lineages displaying reticulated genealogical relationships with their ancestral populations. Gradual movement of early farmers out of the Levant introduced the pre-domesticated reticulated lineages to the northern and eastern parts of the Fertile Crescent, giving rise to the local wild populations but also facilitating fixation of domestication traits. Our model is consistent with the protracted and dispersed transition to agriculture indicated by the archaeobotanical evidence, and also with previous genetic data affiliating domesticated emmer with the wild populations in southeast Turkey. Unlike other protracted models, we assume that humans played an intuitive role throughout the process.Natural Environment Research Council [NE/E015948/1]; Slovak Research and Development Agency [APVV-0661-10, APVV-0197-10]info:eu-repo/semantics/publishedVersio

    Nucleotide diversity and molecular evolution of the WAG-2 gene in common wheat (Triticum aestivum L) and its relatives

    Get PDF
    In this work, we examined the genetic diversity and evolution of the WAG-2 gene based on new WAG-2 alleles isolated from wheat and its relatives. Only single nucleotide polymorphisms (SNP) and no insertions and deletions (indels) were found in exon sequences of WAG-2 from different species. More SNPs and indels occurred in introns than in exons. For exons, exons+introns and introns, the nucleotide polymorphism π decreased from diploid and tetraploid genotypes to hexaploid genotypes. This finding indicated that the diversity of WAG-2 in diploids was greater than in hexaploids because of the strong selection pressure on the latter. All dn/ds ratios were < 1.0, indicating that WAG-2 belongs to a conserved gene affected by negative selection. Thirty-nine of the 57 particular SNPs and eight of the 10 indels were detected in diploid species. The degree of divergence in intron length among WAG-2 clones and phylogenetic tree topology suggested the existence of three homoeologs in the A, B or D genome of common wheat. Wheat AG-like genes were divided into WAG-1 and WAG-2 clades. The latter clade contained WAG-2, OsMADS3 and ZMM2 genes, indicating functional homoeology among them

    Cereal Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl Millet (Pennisetum glaucum [L.] R. Br.)

    Get PDF
    BACKGROUND: During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. METHODOLOGY/PRINCIPAL FINDINGS: Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. CONCLUSIONS/SIGNIFICANCE: Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize

    A Geospatial Modelling Approach Integrating Archaeobotany and Genetics to Trace the Origin and Dispersal of Domesticated Plants

    Get PDF
    Background: The study of the prehistoric origins and dispersal routes of domesticated plants is often based on the analysis of either archaeobotanical or genetic data. As more data become available, spatially explicit models of crop dispersal can be used to combine different types of evidence. Methodology/Principal Findings: We present a model in which a crop disperses through a landscape that is represented by a conductance matrix. From this matrix, we derive least-cost distances from the geographical origin of the crop and use these to predict the age of archaeological crop remains and the heterozygosity of crop populations. We use measures of the overlap and divergence of dispersal trajectories to predict genetic similarity between crop populations. The conductance matrix is constructed from environmental variables using a number of parameters. Model parameters are determined with multiple-criteria optimization, simultaneously fitting the archaeobotanical and genetic data. The consilience reached by the model is the extent to which it converges around solutions optimal for both archaeobotanical and genetic data. We apply the modelling approach to the dispersal of maize in the Americas. Conclusions/Significance: The approach makes possible the integrative inference of crop dispersal processes, whil

    A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p
    corecore