31 research outputs found

    Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo

    Get PDF
    Chronic lymphocytic leukemia (CLL) cells residing in the bone marrow (BM) and in secondary lymphoid tissues receive survival and proliferative signals from the microenvironment, resulting in persistence of residual disease after treatment. In this study, we characterized primary CLL cells cultured with BM stromal cells, CD40 ligand and CpG ODN to partially mimic the microenvironment in the proliferative centers. This co-culture system induced proliferation and chemoresistance in primary CLL cells. Importantly, co-cultured primary CLL cells shared many phenotypical features with circulating proliferative CLL cells, such as upregulation of ZAP-70 and CD38 and higher CD49d and CD62L expression. This indicates aggressiveness and capability to interact with surrounding cells, respectively. In addition, levels of CXCR4 were decreased due to CXCR4 internalization after CXCL12 stimulation by BM stromal cells. We suggest that this co-culture system can be used to test drugs and their combinations that target the proliferative and drug resistant CLL cells

    Inhibition of BCR signaling using the Syk inhibitor TAK-659 prevents stroma-mediated signaling in chronic lymphocytic leukemia cells

    Get PDF
    Altres ajuts: This work was cofinanced by the European Regional Development Fund (ERDF) and Asociación Española Contra el Cáncer (AECC, M.C). N.P. is a recipient of a PhD fellowship granted by Institut de Recerca Vall d'Hebron. C.C. is supported by a grant from Sociedad Española de Hematología y Hemoterapia (SEHH).Proliferation and survival of chronic lymphocytic leukemia (CLL) cells depend on microenvironmental signals coming from lymphoid organs. One of the key players involved in the crosstalk between CLL cells and the microenvironment is the B-cell receptor (BCR). Syk protein, a tyrosine kinase essential for BCR signaling, is therefore a rational candidate for targeted therapy in CLL. Against this background, we tested the efficacy of the highly specific Syk inhibitor TAK-659 in suppressing the favorable signaling derived from the microenvironment. To ex vivo mimic the microenvironment found in the proliferation centers, we co-cultured primary CLL cells with BM stromal cells (BMSC), CD40L and CpG ODN along with BCR stimulation. In this setting, TAK-659 inhibited the microenvironment-induced activation of Syk and downstream signaling molecules, without inhibiting the protein homologue ZAP-70 in T cells. Importantly, the pro-survival, proliferative, chemoresistant and activation effects promoted by the microenvironment were abrogated by TAK-659, which furthermore blocked CLL cell migration toward BMSC, CXCL12, and CXCL13. Combination of TAK-659 with other BCR inhibitors showed synergistic effect in inducing apoptosis, and the sequential addition of TAK-659 in ibrutinib-treated CLL cells induced significantly higher cytotoxicity. These findings provide a strong rationale for the clinical development of TAK-659 in CLL

    Microenvironment regulates the expression of miR-21 and tumor suppressor genes PTEN, PIAS3 and PDCD4 through ZAP-70 in chronic lymphocytic leukemia

    Get PDF
    Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironment, being the BCR pathway one key player in this crosstalk. Among proteins participating, ZAP-70 enhances response to microenvironmental stimuli. MicroRNA-21 (miR-21) is overexpressed in diverse neoplasias including CLL, where it has been associated to refractoriness to fludarabine and to shorter time to progression and survival. To further elucidate the role of ZAP-70 in the biology of CLL, we studied its involvement in miR-21 regulation. MiR-21 expression was higher in CLL cells with high ZAP-70. Ectopic expression of ZAP-70 induced transcription of miR-21 via MAPK and STAT3, which subsequently induced downregulation of tumor suppressors targeted by miR-21. The co-culture of primary CLL cells mimicking the microenvironment induced ZAP-70 and miR-21 expression, as well as downregulation of miR-21 targets. Interestingly, the increase in miR-21 after co-culture was significantly impaired by ibrutinib, indicating that the BCR signaling pathway is involved in its regulation. Finally, survival of CLL cells induced by the co-culture correlated with miR-21 upregulation. In conclusion, stimuli from the microenvironment regulate miR-21 and its targeted tumor suppressor genes via a signaling pathway involving ZAP-70, thus contributing to the cytoprotection offered by the microenvironment particularly observed in CLL cells expressing ZAP-70.This work was supported by research funding from the Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias (PI14/00055, F.B. and PI13/00279, M.C.), cofinanced by the European Regional Development Fund (ERDF) and Asociación Española Contra el Cáncer (AECC Barcelona, M.C. and P.A.). M.C. holds a contract from Ministerio de Economía y Competitividad (MINECO) (RYC-2012-12018). Authors thank the Cellex Foundation for providing research facilities and equipmen

    Repolarization of tumor infiltrating macrophages and increased survival in mouse primary CNS lymphomas after XPO1 and BTK inhibition

    Get PDF
    Altres ajuts: This work was supported by research funding from the Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias cofinanced by the European Regional Development Fund (ERDF); Fundación Asociación Española Contra el Cáncer (M.C. and P.A.) and Gilead Fellowships (GLD16/00144, GLD18/00047, F.B). M.C. holds a contract from Ministerio de Ciencia, Innovación y Universidades. S.B. is the recipient of a postdoctoral fellowship from Fundación Alfonso Martin Escudero.Patients diagnosed with primary central nervous system lymphoma (PCNSL) often face dismal outcomes due to the limited availability of therapeutic options. PCNSL cells frequently have deregulated B-cell receptor (BCR) signaling, but clinical responses to its inhibition using ibrutinib have been brief. In this regard, blocking nuclear export by using selinexor, which covalently binds to XPO1, can also inhibit BCR signaling. Selinexor crosses the blood-brain barrier and was recently shown to have clinical activity in a patient with refractory diffuse large B-cell lymphoma in the CNS. We studied selinexor alone or in combination with ibrutinib in pre-clinical mouse models of PCNSL. Orthotopic xenograft models were established by injecting lymphoma cells into the brain parenchyma of athymic mice. Tumor growth was monitored by bioluminescence. Malignant cells and macrophages were studied by immunohistochemistry and flow cytometry. Selinexor blocked tumor growth and prolonged survival in a bioluminescent mouse model, while its combination with ibrutinib further increased survival. CNS lymphoma in mice was infiltrated by tumor-promoting M2-like macrophages expressing PD-1 and SIRPα. Interestingly, treatment with selinexor and ibrutinib favored an anti-tumoral immune response by shifting polarization toward inflammatory M1-like and diminishing PD-1 and SIRPα expression in the remaining tumor-promoting M2-like macrophages. These data highlight the pathogenic role of the innate immune microenvironment in PCNSL and provide pre-clinical evidence for the development of selinexor and ibrutinib as a new promising therapeutic option with cytotoxic and immunomodulatory potential. The online version of this article (10.1007/s11060-020-03580-y) contains supplementary material, which is available to authorized users

    Inhibition of BCR signaling using the Syk inhibitor TAK-659 prevents stroma-mediated signaling in chronic lymphocytic leukemia cells

    No full text
    Altres ajuts: This work was cofinanced by the European Regional Development Fund (ERDF) and Asociación Española Contra el Cáncer (AECC, M.C). N.P. is a recipient of a PhD fellowship granted by Institut de Recerca Vall d'Hebron. C.C. is supported by a grant from Sociedad Española de Hematología y Hemoterapia (SEHH).Proliferation and survival of chronic lymphocytic leukemia (CLL) cells depend on microenvironmental signals coming from lymphoid organs. One of the key players involved in the crosstalk between CLL cells and the microenvironment is the B-cell receptor (BCR). Syk protein, a tyrosine kinase essential for BCR signaling, is therefore a rational candidate for targeted therapy in CLL. Against this background, we tested the efficacy of the highly specific Syk inhibitor TAK-659 in suppressing the favorable signaling derived from the microenvironment. To ex vivo mimic the microenvironment found in the proliferation centers, we co-cultured primary CLL cells with BM stromal cells (BMSC), CD40L and CpG ODN along with BCR stimulation. In this setting, TAK-659 inhibited the microenvironment-induced activation of Syk and downstream signaling molecules, without inhibiting the protein homologue ZAP-70 in T cells. Importantly, the pro-survival, proliferative, chemoresistant and activation effects promoted by the microenvironment were abrogated by TAK-659, which furthermore blocked CLL cell migration toward BMSC, CXCL12, and CXCL13. Combination of TAK-659 with other BCR inhibitors showed synergistic effect in inducing apoptosis, and the sequential addition of TAK-659 in ibrutinib-treated CLL cells induced significantly higher cytotoxicity. These findings provide a strong rationale for the clinical development of TAK-659 in CLL
    corecore