266 research outputs found

    Laser induced molecular motion in strong nonresonant laser fields

    Get PDF
    The optical dipole force from a singe focussed laser beam was used to study the role of laser-induced molecular alignment on the centre-of-mass motion of carbon disulphide molecules in a molecular beam. The translational, rotational and vibrational temperatures of the carbon disulphide molecules were measured to be 3.4\pm0.2 K, 35\pm10 K and 250\pm14 K respectively. The velocity of the beam was measured to be 542\pm22 m s ^{-1}. Time-of-flight mass spectroscopy was used to measure the acceleration and deceleration of the molecules. Maximum velocity changes of 7.5 m s ^{-1} and 10 m s ^{-1} were recorded for linearly and circularly polarised light respectively. These results showed that the dipole force, \digamma \alpha \bigtriangledown [\alpha_e_f_f(I)I(r)], where \alpha_e_f_f is the effective polarisability and determined through laser-induced alignment, can be modified by changing the laser polarisation. For linearly and circularly polarised light, a 12% difference in effective polarisability was measured to produce a 20% difference in dipole force. The dipole force from a single focussed laser beam produces a molecular optical lens and the downstream density of the molecular focus was probed by measuring the ion signal for both laser polarisations. The focal lengths for linearly and circularly polarised light were found to be separated by \approx 100 \mu m. By altering the laser polarisation from linearly through elliptically to circularly polarised light, the focal length of the molecular optical lens could be smoothly altered over the \approx 100 \mu m focal range. The role of the effective polarisability of each rotational state was also studied numerically. Separate rotational states were found to significantly alter the focal properties of a molecular optical lens. In carbon disulphide, higher rotational states (J > 10), exhibit less molecular alignment and when occupied, the focal length of the molecular optical lens for these states was increased by 60 % compared to the ground state

    Carbon Nanotubes as Nanoelectromechanical Systems

    Full text link
    We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.Comment: 8 pages, 5 eps figures included. Major changes; new material adde

    Coupled Dipole Method Determination of the Electromagnetic Force on a Particle over a Flat Dielectric Substrate

    Full text link
    We present a theory to compute the force due to light upon a particle on a dielectric plane by the Coupled Dipole Method (CDM). We show that, with this procedure, two equivalent ways of analysis are possible, both based on Maxwell's stress tensor. The interest in using this method is that the nature and size or shape of the object, can be arbitrary. Even more, the presence of a substrate can be incorporated. To validate our theory, we present an analytical expression of the force due to the light acting on a particle either in presence, or not, of a surface. The plane wave illuminating the sphere can be either propagating or evanescent. Both two and three dimensional calculations are studied.Comment: 10 pages, 8 figures and 3 table

    Australian evidence-based guidelines for the prevention and management of diabetes-related foot disease: a guideline summary

    Get PDF
    INTRODUCTION: Diabetes-related foot disease (DFD) - foot ulcers, infection, ischaemia - is a leading cause of hospitalisation, disability, and health care costs in Australia. The previous 2011 Australian guideline for DFD was outdated. We developed new Australian evidence-based guidelines for DFD by systematically adapting suitable international guidelines to the Australian context using the ADAPTE and GRADE approaches recommended by the NHMRC. MAIN RECOMMENDATIONS: This article summarises the most relevant of the 98 recommendations made across six new guidelines for the general medical audience, including: prevention - screening, education, self-care, footwear, and treatments to prevent DFD; classification - classifications systems for ulcers, infection, ischaemia and auditing; peripheral artery disease (PAD) - examinations and imaging for diagnosis, severity classification, and treatments; infection - examinations, cultures, imaging and inflammatory markers for diagnosis, severity classification, and treatments; offloading - pressure offloading treatments for different ulcer types and locations; and wound healing - debridement, wound dressing selection principles and wound treatments for non-healing ulcers. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE: For people without DFD, key changes include using a new risk stratification system for screening, categorising risk and managing people at increased risk of DFD. For those categorised at increased risk of DFD, more specific self-monitoring, footwear prescription, surgical treatments, and activity management practices to prevent DFD have been recommended. For people with DFD, key changes include using new ulcer, infection and PAD classification systems for assessing, documenting and communicating DFD severity. These systems also inform more specific PAD, infection, pressure offloading, and wound healing management recommendations to resolve DFD.Peter A Lazzarini, Anita Raspovic, Jenny Prentice, Robert J Commons, Robert A Fitridge, James Charles, Jane Cheney, Nytasha Purcell, Stephen M Twig

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Characterization of Single Gene Copy Number Variants in Schizophrenia

    Get PDF
    Background: Genetic studies of schizophrenia have implicated numerous risk loci including several copy number variants (CNVs) of large effect and hundreds of loci of small effect. In only a few cases has a specific gene been clearly identified. Rare CNVs affecting a single gene offer a potential avenue to discovering schizophrenia risk genes. Methods: CNVs were generated from exome sequencing of 4913 schizophrenia cases and 6188 control subjects from Sweden. We integrated two CNV calling methods (XHMM and ExomeDepth) to expand our set of single-gene CNVs and leveraged two different approaches for validating these variants (quantitative polymerase chain reaction and NanoString). Results: We found a significant excess of all rare CNVs (deletions: p = .0004, duplications: p = .0006) and single-gene CNVs (deletions: p = .04, duplications: p = .03) in schizophrenia cases compared with control subjects. An expanded set of CNVs generated from integrating multiple approaches showed a significant burden of deletions in 11 of 21 gene sets previously implicated in schizophrenia and across all genes in those sets (p = .008), although no tests survived correction. We performed an extensive validation of all deletions in the significant set of voltage-gated calcium channels among CNVs called from both exome sequencing and genotyping arrays. In total, 4 exonic, single-gene deletions were validated in schizophrenia cases and none in control subjects (p = .039), of which all were identified by exome sequencing. Conclusions: These results point to the potential contribution of single-gene CNVs to schizophrenia, indicate that the utility of exome sequencing for CNV calling has yet to be maximized, and note that single-gene CNVs should be included in gene-focused studies using other classes of variation

    Last Glacial Period Cryptotephra Deposits in an Eastern North Atlantic Marine Sequence: Exploring Linkages to the Greenland Ice-Cores

    Get PDF
    The establishment of a tephra framework for the Greenland ice-cores spanning the last glacial period, particularly between 25 and 45 ka b2k, provides strong potential for precisely correlating other palaeoclimatic records to these key archives. Tephra-based synchronisation allows the relative timing of past climatic changes recorded within different depositional environments and potential causal mechanisms to be assessed. Recent studies of North Atlantic marine records have demonstrated the potential of tracing cryptotephra horizons in these sequences and the development of protocols now allows a careful assessment of the isochronous nature of such horizons. Here we report on tephrochronological investigations of a marine sequence retrieved from the Goban Spur, Eastern North Atlantic, covering ?25–60 ka b2k. Density and magnetic separation techniques and an assessment of potential transport and depositional mechanisms have identified three previously unknown isochronous tephra horizons along with deposits of the widespread North Atlantic Ash Zone II and Faroe Marine Ash Zone III. Correlations between the new horizons and the Greenland ice-core tephra framework are explored and despite no tie-lines being identified the key roles that high-resolution climatostratigraphy and shard-specific trace element analysis can play within the assessment of correlations is demonstrated. The previously unknown horizons are new additions to the overall North Atlantic tephra framework for the last glacial period and could be key horizons for future correlations
    • 

    corecore