154 research outputs found

    Alien Registration- Pulsifer, Ella M. (Baldwin, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/32982/thumbnail.jp

    Prunus hortulana: A Virus-Free, Nonsprouting Understock for Hardy Plums and Ornamental Prunus

    Get PDF
    For many years, nurseries in the North Central States have been propagating hardy plums and ornamental Prunus on Prunus americana seedling understocks. Hardiness and compatibility with many scion varieties, together with general availability, ease in growing and handling, and suitability for the budding operation, are recognized attributes which have encouraged almost universal use of this species for many years. From a nursery production standpoint it leaves little to be desired

    Coal Char Gasification in an Electrofluid Reactor

    Full text link

    Communications Biophysics

    Get PDF
    Contains reports on three research projects

    The Canadian consortium for arctic data interoperability : an emerging polar information network

    Get PDF
    Established in 2015, the Canadian Consortium for Arctic Data Interoperability (CCADI) is an emerging initiative to develop an integrated Canadian arctic data anagement system that will facilitate information discovery, establish metadata and data sharing standards, enable interoperability among existing data infrastructures, and that will be accessible to a broad audience of users. Key to the CCADI vision are: standards and mechanisms for metadata interoperability and semantic interoperability; a distributed data exchange platform; streamlined data services with common entry, access, search, match, analysis, visualization and output tools; an intellectual property and sensitive data service; and data stewardship capacity. This will be a particularly challenging set of tasks given that the data planned for inclusion is multidisciplinary, in multiple types that range from sensor data to material artifacts, and, in some cases, confidential.publishedVersio

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience

    Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study

    Get PDF
    With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology
    • …
    corecore