22 research outputs found

    Designing libraries for pooled CRISPR functional screens of long noncoding RNAs.

    Get PDF
    Human and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of researchers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs

    Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells

    Get PDF
    Regulatory non-protein coding RNAs perform a remarkable variety of complex biological functions. Previously, we demonstrated a role of the human non-coding vault RNA1-1 (vtRNA1-1) in inhibiting intrinsic and extrinsic apoptosis in several cancer cell lines. Yet on the molecular level, the function of the vtRNA1-1 is still not fully clear. Here, we created HeLa knock-out cell lines revealing that prolonged starvation triggers elevated levels of apoptosis in the absence of vtRNA1-1 but not in vtRNA1-3 knock-out cells. Next-generation deep sequencing of the mRNome identified the PI3K/Akt pathway and the ERK1/2 MAPK cascade, two prominent signaling axes, to be misregulated in the absence of vtRNA1-1 during starvation-mediated cell death conditions. Expression of vtRNA1-1 mutants identified a short stretch of 24 nucleotides of the vtRNA1-1 central domain as being essential for successful maintenance of apoptosis resistance. This study describes a cell signaling-dependent contribution of the human vtRNA1-1 to starvation-induced programmed cell death

    Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages.

    Get PDF
    CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays

    The Origins and the Biological Consequences of the Pur/Pyr DNA·RNA Asymmetry

    Get PDF
    We analyze the physical origin and the chemical and biological consequences of the asymmetry that occurs in DNA·RNA hybrids when the purine/pyrimidine (Pu/Py) ratio is different in the DNA and RNA strands. When the DNA strand of the hybrid is Py rich, the duplex is much more stable, rigid, and A-like than when the DNA strand is Pu rich. The origins of this dramatic asymmetry are double: first, the apparently innocuous substitution dT → rU produces a significant decrease in stacking, and second, backbone distortions are larger for DNA(Pu)·RNA(Py) hybrids than for the mirror RNA(Pu)·DNA(Py) ones. The functional impact of the structural and dynamic asymmetry in the biological activities of hybrids is dramatic and can be used to improve the efficiency of antisense-type strategies on the basis of the degradation of hybrids by RNase H or gene editing using CRISPR-Cas9 technology

    CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long noncoding RNAs.

    Get PDF
    MOTIVATION CRISPR-Cas9 loss-of-function pooled screening promises to identify which long noncoding RNAs (lncRNAs), amongst the many thousands to have been annotated so far, are capable of mediating cellular functions. The two principal loss-of-function perturbations, CRISPR-inhibition and CRISPR-deletion, employ one and two guide RNAs, respectively. However, no software solution has the versatility to identify hits across both modalities, and the optimal design parameters for such screens remain poorly understood. RESULTS Here we present CASPR (CRISPR Analysis for Single and Paired RNA-guides), a user-friendly, end-to-end screen analysis tool. CASPR is compatible with both CRISPRi and CRISPR-del screens, and balances sensitivity and specificity by generating consensus predictions from multiple algorithms. Benchmarking on ground-truth sets of cancer-associated lncRNAs demonstrates CASPR's improved sensitivity with respect to existing methods. Applying CASPR to published screens, we identify two parameters that predict lncRNA hits: expression, and annotation quality of the transcription start site. Thus CASPR is a versatile and complete solution for lncRNA CRISPR screen analysis, and reveals principles for including lncRNAs in screening libraries. AVAILABILITY https://judithbergada.github.io/CASPR/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online

    Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs.

    Get PDF
    CRISPR-Cas9 deletion (CRISPR-del) is the leading approach for eliminating DNA from mammalian cells and underpins a variety of genome-editing applications. Target DNA, defined by a pair of double-strand breaks (DSBs), is removed during nonhomologous end-joining (NHEJ). However, the low efficiency of CRISPR-del results in laborious experiments and false-negative results. By using an endogenous reporter system, we show that repression of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-an early step in NHEJ-yields substantial increases in DNA deletion. This is observed across diverse cell lines, gene delivery methods, commercial inhibitors, and guide RNAs, including those that otherwise display negligible activity. We further show that DNA-PKcs inhibition can be used to boost the sensitivity of pooled functional screens and detect true-positive hits that would otherwise be overlooked. Thus, delaying the kinetics of NHEJ relative to DSB formation is a simple and effective means of enhancing CRISPR-deletion

    Is Evolutionary Conservation a Useful Predictor for Cancer Long Noncoding RNAs? Insights from the Cancer LncRNA Census 3

    Get PDF
    Evolutionary conservation is a measure of gene functionality that is widely used to prioritise long noncoding RNAs (lncRNA) in cancer research. Intriguingly, while updating our Cancer LncRNA Census (CLC), we observed an inverse relationship between year of discovery and evolutionary conservation. This observation is specific to cancer over other diseases, implying a sampling bias in the selection of lncRNA candidates and casting doubt on the value of evolutionary metrics for the prioritisation of cancer-related lncRNAs

    Scalable Design of Paired CRISPR Guide RNAs for Genomic Deletion

    No full text
    CRISPR-Cas9 technology can be used to engineer precise genomic deletions with pairs of single guide RNAs (sgRNAs). This approach has been widely adopted for diverse applications, from disease modelling of individual loci, to parallelized loss-of-function screens of thousands of regulatory elements. However, no solution has been presented for the unique bioinformatic design requirements of CRISPR deletion. We here present CRISPETa, a pipeline for flexible and scalable paired sgRNA design based on an empirical scoring model. Multiple sgRNA pairs are returned for each target, and any number of targets can be analyzed in parallel, making CRISPETa equally useful for focussed or high-throughput studies. Fast run-times are achieved using a pre-computed off-target database. sgRNA pair designs are output in a convenient format for visualisation and oligonucleotide ordering. We present pre-designed, high-coverage library designs for entire classes of protein-coding and non-coding elements in human, mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. In human cells, we reproducibly observe deletion efficiencies of ≥50% for CRISPETa designs targeting an enhancer and exonic fragment of the MALAT1 oncogene. In the latter case, deletion results in production of desired, truncated RNA. CRISPETa will be useful for researchers seeking to harness CRISPR for targeted genomic deletion, in a variety of model organisms, from single-target to high-throughput scales.This work was financially supported by the following grants: CSD2007-00050 from the Spanish Ministry of Science (http://www.mineco.gob.es/portal/site/mineco/idi), grant SGR-1430 from the Catalan Government (http://web.gencat.cat/ca/temes/tecnologia/), grant ERC-2011-AdG-294653-RNA-MAPS from the European Community financial support under the FP7 (https://erc.europa.eu/) and grant R01MH101814 by the National Human Genome Research Institute of the National Institutes of Health (https://www.genome.gov/), to RG. Ramón y Cajal RYC-2011-08851 and Plan Nacional BIO2011-27220, both from the Spanish Ministry of Science (http://www.mineco.gob.es/portal/site/mineco/idi), to RJ. We also acknowledge support of the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 (http://www.mineco.gob.es/portal/site/mineco/idi). We also acknowledge the support of the CERCA Programme / Generalitat de Catalunya (http://web.gencat.cat/ca/temes/tecnologia/). This research was partly supported by the NCCR RNA & Disease funded by the Swiss National Science Foundation (http://www.nccr-rna-and-disease.ch/)
    corecore