63 research outputs found

    Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells

    Full text link
    Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si) then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization loss and increase the efficiency of conventional Si solar cells. Here we show that a change in the polymorphism of tetracene deposited on Si due to air exposure, facilitates triplet transfer from tetracene into Si. Magnetic field-dependent photocurrent measurements confirm that triplet excitons contribute to the photocurrent. The decay of tetracene delayed photoluminescence was used to determine a triplet transfer time of 215 ns and a maximum yield of triplet transfer into Si of ~50 %. Our study suggests that control over the morphology of tetracene during deposition will be of great importance to boost the triplet transfer yield further

    Будущее – за интеллектуалами

    Get PDF
    Inspired by the homogeneous catalyst tris­(pentafluorophenyl) borane [B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>], which acts as a promotor of Si–H bond activation, we developed and studied a method of modifying silicon oxide surfaces using hydrosilanes with B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> as the catalyst. This dedihydrosiloxanation reaction yields complete surface coverage within 10 min at room temperature. Organic monolayers derived from hydrosilanes with varying carbon chain lengths (C<sub>8</sub>–C<sub>18</sub>) were prepared on oxidized Si(111) surfaces, and the thermal and hydrolytic stabilities of the obtained monolayers were investigated in acidic (pH 3) medium, basic (pH 11) medium, phosphate-buffered saline (PBS), and deionized water (neutral conditions) for up to 30 days. DFT calculations were carried out to gain insight into the mechanism, and the computational results support a mechanism involving silane activation with B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. This catalyzed reaction path proceeds through a low-barrier-height transition state compared to the noncatalyzed reaction path

    Surface heterogeneous nucleation-mediated release of beta-carotene from porous silicon

    No full text
    We demonstrate that the release of a poorly soluble molecule from nanoporous carriers is a complex process that undergoes heterogeneous surface nucleation events even under significantly diluted release conditions, and that those events heavily affect the dynamics of release. Using beta-carotene and porous silicon as loaded molecule and carrier model, respectively, we show that the cargo easily nucleates at the pore surface during the release, forming micro-to macroscopic solid particles at the pores surface. These particles dissolve at a much slower pace, compared to the rate of dissolution of pure beta-carotene in the same solvent, and they negatively affect the reproducibility of the release experiments, possibly because their solubility depends on their size distribution. We propose to exploit this aspect to use release kinetics as a better alternative to the induction time method, and to thereby detect heterogenous nucleation during release experiments. In fact, release dynamics provide much higher sensitivity and reproducibility as they average over the entire sample surface instead of depending on statistical analysis over a small area to find clusters.</p

    One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl<sub>3</sub>-Based Silicone Nanofilaments

    No full text
    Superhydrophobic surfaces gain ever-growing attention because of their applicability in many (consumer) products/materials as they often display, among others, antifouling, anti-icing, and/or self-cleaning properties. A simple way to achieve superhydrophobicity is through the growth of silicone nanofilaments. These nanofilaments, however, are very often nonreactive and thus difficult to utilize in subsequent chemistries. In response, we have developed a single-step procedure to grow (SiHCl3-based) silicone nanofilaments with selective reactivity that are intrinsically superhydrophobic. The silicone nanofilaments could be further functionalized via Pt-catalyzed hydrosilylation of exposed Si-H moieties. These surfaces are easily obtained using mild conditions and are stable under hydrolytic conditions (neutral water, 24 h at 80 °C) while remaining highly transparent, which makes them well suited for optical and photochemical experiments.</p

    Mild and Selective C-H Activation of COC Microfluidic Channels Allowing Covalent Multifunctional Coatings

    No full text
    Plastics, such as cyclic olefin copolymer (COC), are becoming an increasingly popular material for microfluidics. COC is used, in part, because of its (bio)-chemical resistance. However, its inertness and hydrophobicity can be a major downside for many bioapplications. In this paper, we show the first example of a surface-bound selective C-H activation of COC into alcohol C-OH moieties under mild aqueous conditions at room temperature. The nucleophilic COC-OH surface allows for subsequent covalent attachments, such as of a H-terminated silane. The resulting hybrid material (COC-Si-H) was then modified via a photolithographic hydrosilylation in the presence of ω-functionalized 1-alkenes to form a new highly stable, solvent-resistant hybrid surface.</p

    Light-Activated Electroactive Molecule-Based Memory Microcells Confined on a Silicon Surface

    No full text
    International audienceUltrahigh-capacity molecular AND gates provide the potential for the next-generation dynamic random access memory. The ferrocene-terminated monolayer on oxide-free silicon system allows a highly stable and independent switching with both light and potential, yielding precisely such an AND gate

    One-Pot Gram-Scale Synthesis of Hydrogen-Terminated Silicon Nanoparticles

    No full text
    Silicon nanoparticles (Si NPs) are highly attractive materials for typical quantum dots functions, such as in light-emitting and bioimaging applications, owing to silicon's intrinsic merits of minimal toxicity, low cost, high abundance, and easy and highly stable functionalization. Especially nonoxidized Si NPs with a covalently bound coating serve well in these respects, given the minimization of surface defects upon hydrosilylation of H-terminated Si NPs. However, to date, methods to obtain such H-terminated Si NPs are still not easy. Herein, we report a new synthetic method to produce size-tunable robust, highly crystalline H-terminated Si NPs (4-9 nm) using microwave irradiation within 5 min at temperatures between 25 and 200 °C and their further covalent functionalization. The key step to obtain highly fluorescent (quantum yield of 7-16%) green-red Si NPs in one simple step is the reduction of triethoxysilane and (+)-sodium l-ascorbate, yielding routinely ∼1 g of H-Si NPs via a highly scalable route in 5-15 min. Subsequent functionalization via hydrosilylation yielded Si NPs with an emission quantum yield of 12-14%. This approach can be used to easily produce high-quality H-Si NPs in gram-scale quantities, which brings the application of functionalized Si NPs significantly closer.</p

    One-Pot Gram-Scale Synthesis of Hydrogen-Terminated Silicon Nanoparticles

    No full text
    Silicon nanoparticles (Si NPs) are highly attractive materials for typical quantum dots functions, such as in light-emitting and bioimaging applications, owing to silicon's intrinsic merits of minimal toxicity, low cost, high abundance, and easy and highly stable functionalization. Especially nonoxidized Si NPs with a covalently bound coating serve well in these respects, given the minimization of surface defects upon hydrosilylation of H-terminated Si NPs. However, to date, methods to obtain such H-terminated Si NPs are still not easy. Herein, we report a new synthetic method to produce size-tunable robust, highly crystalline H-terminated Si NPs (4-9 nm) using microwave irradiation within 5 min at temperatures between 25 and 200 °C and their further covalent functionalization. The key step to obtain highly fluorescent (quantum yield of 7-16%) green-red Si NPs in one simple step is the reduction of triethoxysilane and (+)-sodium l-ascorbate, yielding routinely ∼1 g of H-Si NPs via a highly scalable route in 5-15 min. Subsequent functionalization via hydrosilylation yielded Si NPs with an emission quantum yield of 12-14%. This approach can be used to easily produce high-quality H-Si NPs in gram-scale quantities, which brings the application of functionalized Si NPs significantly closer.</p

    CCDC 2114205: Experimental Crystal Structure Determination

    No full text
    FATSEC : (R,R)-N,N-((1S,4S)-cyclohexane-1,4-diyldicarbonyl)bis(4-methylbenzene-1-sulfonimidoyl fluoride
    corecore