18 research outputs found

    Microbial electrochemistry for bioremediation

    Get PDF
    Lack of suitable electron donors or acceptors is in many cases the key reason for pollutants to persist in the environment. Externally supplementation of electron donors or acceptors is often difficult to control and/or involves chemical additions with limited lifespan, residue formation or other adverse side effects. Microbial electrochemistry has evolved very fast in the past years - this field relates to the study of electrochemical interactions between microorganisms and solid-state electron donors or acceptors. Current can be supplied in such so-called bioelectrochemical systems (BESs) at low voltage to provide or extract electrons in a very precise manner. A plethora of metabolisms can be linked to electrical current now, from metals reductions to denitrification and dechlorination. In this perspective, we provide an overview of the emerging applications of BES and derived technologies towards the bioremediation field and outline how this approach can be game changing

    Alternative 3′ Pre-mRNA Processing in Saccharomyces cerevisiae Is Modulated by Nab4/Hrp1 In Vivo

    Get PDF
    The Saccharomyces cerevisiae RNA-binding protein Nab4/Hrp1 is a component of the cleavage factor complex required for 3′ pre-mRNA processing. Although the precise role of Nab4/Hrp1 remains unclear, it has been implicated in correct positioning of the cleavage site in vitro. Here, we show that mutation or overexpression of NAB4/HRP1 alters polyA cleavage site selection in vivo. Using bioinformatic analysis, we identified four related motifs that are statistically enriched in Nab4-associated transcripts; each motif is similar to the known binding site for Nab4/Hrp1. Site-directed mutations in predicted Nab4/Hrp1 binding elements result in decreased use of adjacent cleavage sites. Additionally, we show that the nab4-7 mutant displays a striking resistance to toxicity from excess copper. We identify a novel target of alternative 3′ pre-mRNA processing, CTR2, and demonstrate that CTR2 is required for the copper resistance phenotype in the nab4-7 strain. We propose that alternative 3′ pre-mRNA processing is mediated by a Nab4-based mechanism and that these alternative processing events could help control gene expression as part of a physiological response in S. cerevisiae

    A New Yeast Poly(A) Polymerase Complex Involved in RNA Quality Control

    Get PDF
    Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNA(Met) (tRNA(i) (Met)). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNA(i) (Met) with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNA(i) (Met) by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover

    Biocathodic nitrous oxide removal in bioelectrochemical systems

    No full text
    Anthropogenic nitrous oxide (N2O) emissions represent up to 40% of the global N2O emission and are constantly increasing. Mitigation of these emissions is warranted since N2O is a strong greenhouse gas and important ozone-depleting compound. Until now, only physicochemical technologies have been applied to mitigate point sources of N2O, and no biological treatment technology has been developed so far. In this study, a bioelectrochemical system (BES) with an autotrophic denitrifying biocathode was considered for the removal of N2O. The high N2O removal rates obtained ranged between 0.76 and 1.83 kg N m(-3) net cathodic compartment (NCC) d(-1) and were proportional to the current production, resulting in cathodic coulombic efficiencies near 100%. Furthermore, our experiments suggested the active involvement of microorganisms as the catalyst for the reduction of N2O to N-2, and the optimal cathode potential ranged from -200 to 0 mV vs standard hydrogen electrode (SHE) in order to obtain high conversion rates. Successful operation of the system for more than 115 days with N2O as the sole cathodic electron acceptor strongly indicated that N2O respiration yielded enough energy to maintain the biological process. To our knowledge, this study provides for the first time proof of concept of biocathodic N2O removal at long-term without the need for high temperatures and expensive catalysts

    Microbial electrochemistry for bioremediation (vol 1, 100013, 2020)

    No full text
    Erratum regarding missing Declaration of Competing Interest statements in previously published articles
    corecore