342 research outputs found
Gamma-ray burst observations with the H.E.S.S. air Cherenkov array
Gamma-ray bursts (GRBs) are among the potential very-high-energy (VHE) gamma-ray sources. VHE emission from GRBs is predicted by most GRB models. Despite its generally fast-fading nature in many wavebands, the time evolution of any VHE radiation is still not clear. The highest energy radiation from GRBs ever detected firmly by any instrument was a 18 GeV photon coming from GRB 940217 detected with EGRET about 1.5 hour after the onset of the GRB. There is also a tentative detection using MILAGRITO of TeV excess events from GRB 970417a. In order to probe the largely unexplored VHE spectra of GRBs, a GRB observing program has been set up by the H.E.S.S. collaboration. With the high sensitivity of the H.E.S.S. array, VHE flux levels predicted by GRB models are well within reach. Extra-galactic background light absorption is taken into account in cases where redshifts are known. We will present the H.E.S.S. observations of and results from some of the reported GRB positions during the past few years.Pak-Hin Tam, Paula Chadwick, Yves Gallant, Dieter Horns, Gerd Puhlhofer, Gavin Rowell, Stefan Wagner for the H.E.S.S. COLLABORATIO
Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar Markarian 421 during February and May 2000
In this paper we present the results of simultaneous observations of the TeV
blazar Markarian 421 (Mrk 421) at X-ray and TeV Gamma-ray energies with the
Rossi X-Ray Timing Explorer (RXTE) and the stereoscopic Cherenkov Telescope
system of the HEGRA (High Energy Gamma Ray Astronomy) experiment, respectively.
The source was monitored from February 2nd to February 16th and from May 3rd to
May 8th, 2000. We discuss in detail the temporal and spectral properties of the
source. Remarkably, the TeV observations of February 7th/8th showed
statistically significant evidence for substantial TeV flux variability on 30
min time scale. We show the results of modeling the data with a time dependent
homogeneous Synchrotron Self-Compton (SSC) model. The X-ray and TeV gamma-ray
emission strengths and energy spectra together with the rapid flux variability
strongly suggest that the emission volume is approaching the observer with a
Doppler factor of 50 or higher. The different flux variability time scales
observed at X-rays and TeV Gamma-rays indicate that a more detailed analysis
will require inhomogeneous models with several emission zones.Comment: Accepted for Publication in ApJ, 21 Pages, 5 Figure
Prompt dipole radiation in fusion reactions
The prompt gamma ray emission was investigated in the 16A MeV energy region
by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus
in the vicinity of 132Ce. We show that the prompt radiation, which appears to
be still effective at such a high beam energy, has an angular distribution
pattern consistent with a dipole oscillation along the symmetry axis of the
dinuclear system. The data are compared with calculations based on a collective
bremsstrahlung analysis of the reaction dynamics
The Energy Spectrum of TeV Gamma-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes
The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray
Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for
a total of about 200 hrs during two observational campaigns: from September
1997 to March 1998 and from August 1998 to April 1999. The recent detailed
studies of system performance give an energy threshold and an energy resolution
for gamma-rays of 500 GeV and ~ 18%, respectively. The Crab energy spectrum was
measured with the HEGRA IACT system in a very broad energy range up to 20 TeV,
using observations at zenith angles up to 65 degrees. The Crab data can be
fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields
dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2}
s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA
IACT system, agrees within 15% in the absolute scale and within 0.1 units in
the power law index with the latest measurements by the Whipple, CANGAROO and
CAT groups, consistent within the statistical and systematic errors quoted by
the experiments. The pure power-law spectrum of TeV gamma-rays from the Crab
Nebula constrains the physics parameters of the nebula environment as well as
the models of photon emission.Comment: to appear in ApJ, 29 pages, 6 figure
Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures and in nucleus-nucleus collisions at the CERN Super Proton Synchrotron
Results from the NA49 experiment at the CERN SPS are presented on
event-by-event transverse momentum and multiplicity fluctuations of charged
particles, produced at forward rapidities in central Pb+Pb interactions at beam
momenta 20, 30, 40, 80, and 158 GeV/c, as well as in systems of
different size (, C+C, Si+Si, and Pb+Pb) at 158 GeV/c. This publication
extends the previous NA49 measurements of the strongly intensive measure
by a study of the recently proposed strongly intensive measures of
fluctuations and . In the explored kinematic
region transverse momentum and multiplicity fluctuations show no significant
energy dependence in the SPS energy range. However, a remarkable system size
dependence is observed for both and , with the
largest values measured in peripheral Pb+Pb interactions. The results are
compared with NA61/SHINE measurements in collisions, as well as with
predictions of the UrQMD and EPOS models.Comment: 12 pages, 14 figures, to be submitted to PR
Correlated intense X-ray and TeV activity of Mrk~501 in 1998 June
We present exactly simultaneous X-ray and TeV monitoring with {\it RXTE} and
HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial
period of very low flux at both wavelengths, the source underwent a remarkable
flare in the TeV and X-ray energy bands, lasting for about six days and with a
larger amplitude at TeV energies than in the X-ray band. At the peak of the TeV
flare, rapid TeV flux variability on sub-hour timescales is found. Large
spectral variations are observed at X-rays, with the 3--20 keV photon index of
a pure power law continuum flattening from to on a
timescale of 2--3 days. This implies that during the maximum of the TeV
activity, the synchrotron peak shifted to energies keV, a behavior
similar to that observed during the longer-lasting, more intense flare in 1997
April. The TeV spectrum during the flare is described by a power law with
photon index and an exponential cutoff at 4 TeV; an
indication for spectral softening during the flare decay is observed in the TeV
hardness ratios. Our results generally support a scenario where the TeV photons
are emitted via inverse Compton scattering of ambient seed photons by the same
electron population responsible for the synchrotron X-rays. The simultaneous
spectral energy distributions (SEDs) can be fit with a one-zone
synchrotron-self Compton model assuming a substantial increase of the magnetic
field and the electron energy by a factor of 3 and 10, respectively.Comment: Accepted for publication in ApJ, Part
The TeV Energy Spectrum of Mkn 501 Measured with the Stereoscopic Telescope System of HEGRA during 1998 and 1999
During 1997, the BL Lac object Mkn 501 went into an extraordinary state of
high X-ray and TeV gamma-ray activity, lasting more than 6 months. In this
paper we report on the TeV emission characteristics of the source in the
subsequent years of 1998 and 1999 as measured with the Stereoscopic Cherenkov
Telescope System of HEGRA (La Palma, Canary Islands). Our observations reveal a
1998-1999 mean emission level at 1 TeV of 1/3 of the flux of the Crab Nebula, a
factor of 10 lower than during the year of 1997. A dataset of 122 observations
hours with the HEGRA telescope system makes it possible to assess for the first
time the Mkn 501 TeV energy spectrum for a mean flux level substantially below
that of the Crab Nebula with reasonable statistical accuracy. Excluding the
data of a strong flare, we find evidence that the 1998--1999 low-flux spectrum
is substantially softer (by 0.44+-0.1(stat) in spectral index) than the 1997
time averaged spectrum. The 500 GeV to 10 TeV energy spectrum can well be
described by a power law model with exponential cutoff: dN/dE ~ E^(-alpha)
exp(-E/E0) with alpha=2.31+-0.22(stat), and E0=5.1 (-2.3+7.8)(stat) TeV. Within
statistical accuracy, also a pure power law model gives an acceptable fit to
the data: dN/dE ~ E^(-Gamma) with Gamma=2.76+-0.08(stat). After presenting the
1998-1999 TeV characteristics of the source we discuss the implications of the
results.Comment: Accepted for publication in The Astrophysical Journal, Part 1, on
August 4th, 200
Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon
The transverse momentum and rapidity distributions of net protons and
negatively charged hadrons have been measured for minimum bias proton-nucleus
and deuteron-gold interactions, as well as central oxygen-gold and
sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net
protons at midrapidity in central nucleus-nucleus collisions increases both
with target mass for sulphur projectiles and with the projectile mass for a
gold target. The shape of the rapidity distributions of net protons forward of
midrapidity for d+Au and central S+Au collisions is similar. The average
rapidity loss is larger than 2 units of rapidity for reactions with the gold
target. The transverse momentum spectra of net protons for all reactions can be
described by a thermal distribution with `temperatures' between 145 +- 11 MeV
(p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The
multiplicity of negatively charged hadrons increases with the mass of the
colliding system. The shape of the transverse momentum spectra of negatively
charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and
central nucleus-nucleus collisions. The mean transverse momentum is almost
constant in the vicinity of midrapidity and shows little variation with the
target and projectile masses. The average number of produced negatively charged
hadrons per participant baryon increases slightly from p+p, p+A to central
S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.
Multiplicity fluctuations in nuclear collisions at 158 A GeV
System size dependence of multiplicity fluctuations of charged particles
produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN
experiment. Results indicate a non-monotonic dependence of the scaled variance
of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb
interactions with number of projectile participants of about 35. This effect is
not observed in a string-hadronic model of nuclear collision HIJING.Comment: Presented at "Focus on Multiplicity", 17-19 of June, Bari, Ital
Antideuteron and deuteron production in mid-central Pb+Pb collisions at 158 GeV
Production of deuterons and antideuterons was studied by the NA49 experiment
in the 23.5% most central Pb+Pb collisions at the top SPS energy of
=17.3 GeV. Invariant yields for and were measured
as a function of centrality in the center-of-mass rapidity range .
Results for together with previously published
measurements are discussed in the context of the coalescence model. The
coalescence parameters were deduced as a function of transverse momentum
and collision centrality.Comment: 9 figure
- …