2,143 research outputs found

    Granular Brownian motion

    Get PDF
    We study the stochastic motion of an intruder in a dilute driven granular gas. All particles are coupled to a thermostat, representing the external energy source, which is the sum of random forces and a viscous drag. The dynamics of the intruder, in the large mass limit, is well described by a linear Langevin equation, combining the effects of the external bath and of the "granular bath". The drag and diffusion coefficients are calculated under few assumptions, whose validity is well verified in numerical simulations. We also discuss the non-equilibrium properties of the intruder dynamics, as well as the corrections due to finite packing fraction or finite intruder mass.Comment: 19 pages, 4 figures, in press on Journal of Statistical Mechanics: Theory and Experiment

    Dynamics of a massive intruder in a homogeneously driven granular fluid

    Full text link
    A massive intruder in a homogeneously driven granular fluid, in dilute configurations, performs a memory-less Brownian motion with drag and temperature simply related to the average density and temperature of the fluid. At volume fraction 1050\sim 10-50% the intruder's velocity correlates with the local fluid velocity field: such situation is approximately described by a system of coupled linear Langevin equations equivalent to a generalized Brownian motion with memory. Here one may verify the breakdown of the Fluctuation-Dissipation relation and the presence of a net entropy flux - from the fluid to the intruder - whose fluctuations satisfy the Fluctuation Relation.Comment: 6 pages, 2 figures, to be published on "Granular Matter" in a special issue in honor of the memory of Prof. Isaac Goldhirsc

    Nickel hydrogen bipolar battery electrode design

    Get PDF
    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented

    On anomalous diffusion and the out of equilibrium response function in one-dimensional models

    Full text link
    We study how the Einstein relation between spontaneous fluctuations and the response to an external perturbation holds in the absence of currents, for the comb model and the elastic single-file, which are examples of systems with subdiffusive transport properties. The relevance of non-equilibrium conditions is investigated: when a stationary current (in the form of a drift or an energy flux) is present, the Einstein relation breaks down, as is known to happen in systems with standard diffusion. In the case of the comb model, a general relation, which has appeared in the recent literature, between the response function and an unperturbed suitable correlation function, allows us to explain the observed results. This suggests that a relevant ingredient in breaking the Einstein formula, for stationary regimes, is not the anomalous diffusion but the presence of currents driving the system out of equilibrium.Comment: 10 pages, 4 figure

    Irreversible effects of memory

    Full text link
    The steady state of a Langevin equation with short ranged memory and coloured noise is analyzed. When the fluctuation-dissipation theorem of second kind is not satisfied, the dynamics is irreversible, i.e. detailed balance is violated. We show that the entropy production rate for this system should include the power injected by ``memory forces''. With this additional contribution, the Fluctuation Relation is fairly verified in simulations. Both dynamics with inertia and overdamped dynamics yield the same expression for this additional power. The role of ``memory forces'' within the fluctuation-dissipation relation of first kind is also discussed.Comment: 6 pages, 1 figure, publishe

    Wave Energy: a Pacific Perspective

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by The Royal Society and can be found at: http://rsta.royalsocietypublishing.org/.This paper illustrates the status of wave energy development in Pacific Rim countries by characterizing the available resource and introducing the region‟s current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region‟s vision of the future of wave energy

    Fluctuation-Dissipation relation in sub-diffusive systems: the case of granular single-file

    Full text link
    We study a gas of hard rods on a ring, driven by an external thermostat, with either elastic or inelastic collisions, which exhibits sub-diffusive behavior t1/2 \sim t^{1/2}. We show the validity of the usual Fluctuation-Dissipation (FD) relation, i.e. the proportionality between the response function and the correlation function, when the gas is elastic or diluted. On the contrary, in strongly inelastic or dense cases, when the tracer velocity is no more independent of the other degrees of freedom, the Einstein formula fails and must be replaced by a more general FD relation.Comment: 9 pages, 3 figure

    Optimality Conditions for Nondifferentiable Multiobjective Semi-Infinite Programming Problems

    Get PDF
    We have considered a multiobjective semi-infinite programming problem with a feasible set defined by inequality constraints. First we studied a Fritz-John type necessary condition. Then, we introduced two constraint qualifications and derive the weak and strong Karush-Kuhn-Tucker (KKT in brief) types necessary conditions for an efficient solution of the considered problem. Finally an extension of a Caristi-Ferrara-Stefanescu result for the (Φ,ρ)-invexity is proved, and some sufficient conditions are presented under this weak assumption. All results are given in terms of Clark subdifferential
    corecore