12 research outputs found

    Rapid purification of RNAs using fast performance liquid chromatography (FPLC)

    No full text
    We present here an improved RNA purification method using fast performance liquid chromatography (FPLC) size-exclusion chromatography in place of denaturing polyacrylamide gel electrophoresis (PAGE). The method allows preparation of milligram quantities of pure RNA in a single day. As RNA oligonucleotides behave differently from globular proteins in the size-exclusion column, we present standard curves for RNA oligonucleotides of different lengths on both the Superdex 75 column and the Superdex 200 size-exclusion column. Using this approach, we can separate monomer from multimeric RNA species, purify the desired RNA product from hammerhead ribozyme reactions, and isolate refolded RNA that has aggregated after long-term storage. This methodology allows simple and rapid purification of RNA oligonucleotides for structural and biophysical studies

    Rapid purification of RNAs using fast performance liquid chromatography (FPLC)

    No full text
    We present here an improved RNA purification method using fast performance liquid chromatography (FPLC) size-exclusion chromatography in place of denaturing polyacrylamide gel electrophoresis (PAGE). The method allows preparation of milligram quantities of pure RNA in a single day. As RNA oligonucleotides behave differently from globular proteins in the size-exclusion column, we present standard curves for RNA oligonucleotides of different lengths on both the Superdex 75 column and the Superdex 200 size-exclusion column. Using this approach, we can separate monomer from multimeric RNA species, purify the desired RNA product from hammerhead ribozyme reactions, and isolate refolded RNA that has aggregated after long-term storage. This methodology allows simple and rapid purification of RNA oligonucleotides for structural and biophysical studies

    The Impact of Aminoglycosides on the Dynamics of Translation Elongation

    Get PDF
    Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition

    Uncovering translation roadblocks during the development of a synthetic tRNA

    No full text
    Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome
    corecore