186 research outputs found

    Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    Get PDF
    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios

    Evaluation of impurity densities from charge exchange recombination spectroscopy measurements at ASDEX Upgrade

    Get PDF
    At ASDEX upgrade (AUG) a new framework for the evaluation of impurity densities based on measurements from charge exchange recombination spectroscopy (CXRS) diagnostics has been developed. The charge exchange impurity concentration analysis code, or CHICA, can perform these calculations for all of the beam-based CXRS diagnostics at AUG and is equipped with the atomic data for all of the regularly measured charge exchange spectral lines (He, Li, B, C, N, O, and Ne). CHICA includes four different methods for the evaluation of the neutral density populations, which feature different implementations and contain varying levels of sophistication. These methods have been thoroughly benchmarked against one another, enabling the important processes for the evaluation of neutral densities to be identified as well as the neutral populations that are most critical to the accurate interpretation of the measured CXRS intensities. For the AUG neutral beams, charge exchange with the ground state of the first energy component is typically the dominant contribution to the measured CXRS intensities, but emission from reactions with the n = 2 beam halo population can contribute up to 35% to the total signal and must be included in the analysis. Neglect of this population leads to incorrect magnitudes and incorrect profile shapes of the calculated impurity density profiles. The edge lines of sight (LOS) of the core CXRS diagnostics at AUG intersect the edge pedestal inside of the neutral beam volume. Therefore, the impurity density is not constant along the LOS, complicating the interpretation of the measured intensities. Within CHICA a forward model for the edge impurity densities has been implemented, enabling the reconstruction of accurate edge profiles

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign

    Get PDF
    Tritium (T) distributions on tungsten (W)-coated plasma-facing tiles used in the third ITER-like wall campaign (2015–2016) of the Joint European Torus (JET) were examined by means of an imaging plate technique and β-ray induced x-ray spectrometry, and they were compared with the distributions after the second (2013–2014) campaign. Strong enrichment of T in beryllium (Be) deposition layers was observed after the second campaign. In contrast, T distributions after the third campaign was more uniform though Be deposition layers were visually recognized. The one of the possible explanations is enhanced desorption of T from Be deposition layers due to higher tile temperatures caused by higher energy input in the third campaign
    • …
    corecore