1,539 research outputs found

    Microtearing turbulence saturation via electron temperature flattening at low-order rational surfaces

    Get PDF
    Microtearing instability is one of the major sources of turbulent transport in high-β\beta tokamaks. These modes lead to very localized transport at low-order rational magnetic field lines, and we show that they can saturate by flattening the local temperature gradient. This saturation process depends crucially on the density of rational surfaces, and thus the system-size, and gives rise to a worse-than-gyro-Bohm transport scaling for system-sizes typical of existing tokamaks and simulations

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Nonlinear stabilization of tokamak microturbulence by fast ions

    Get PDF
    Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.Comment: 5 pages, 5 figure

    Enhanced Transport at High Plasma Pressure and Subthreshold Kinetic Ballooning Modes in Wendelstein 7-X

    Get PDF
    High-performance fusion plasmas, requiring high pressure β, are not well understood in stellarator-type experiments. Here, the effect of β on ion-temperature-gradient-driven (ITG) turbulence is studied in Wendelstein 7-X (W7-X), showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the turbulence. By zonal-flow erosion, these subthreshold KBMs (stKBMs) affect ITG saturation and enable higher heat fluxes. Controlling stKBMs will be essential to allow W7-X and future stellarators to achieve maximum performance.</p

    Extinction and backscatter measurements of Antarctic PSC's, 1987: Implications for particle and vapor removal

    Get PDF
    The temperature dependence is examined of optical properties measured in the Antarctic during 1987 at the 70 mb level (near 18 km), a level chosen to correlate the results with in situ measurements made from the NASA-Ames ER-2 aircraft during the 1987 Airborne Antarctic Ozone Experiment (AAOE). The data set consists of extinction measurements by Sam 2 inside the Antarctic polar vortex from May to October 1987; and backscatter measurements by the UV-DIAL (Ultraviolet Differential Absorption Lidar) system aboard the Ames DC-8 aircraft during selected AAOE flights. Observed trends are compared with results from a revised version of Pole and McCormick's model to classify the PSC observations by Type (1 or 2) and infer the temporal behavior of the ambient aerosol and ambient vapor mixing ratios. The sample figures show monthly ensembles of the 70-mb Sam 2 extinction ratio (the ratio of aerosol or PSC extinction to molecule extinction) as a function of NMC temperature at the beginning (June) and (October) of the 1987 Antarctic winter. Both ensembles show two rather distinct clusters of points: one oriented in the near vertical direction which depicts the change with temperature of the ambient aerosol extinction ratio; and a second cluster oriented in the near horizontal direction whose position on the vertical scale marks a change in particle phase (i.e., PSC formation) and whose length (the extinction enhancement related to that of the ambient aerosol) is an indicator of PSC type

    Enhanced Transport at High Plasma Pressure and Subthreshold Kinetic Ballooning Modes in Wendelstein 7-X

    Get PDF
    High-performance fusion plasmas, requiring high pressure β, are not well understood in stellarator-type experiments. Here, the effect of β on ion-temperature-gradient-driven (ITG) turbulence is studied in Wendelstein 7-X (W7-X), showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the turbulence. By zonal-flow erosion, these subthreshold KBMs (stKBMs) affect ITG saturation and enable higher heat fluxes. Controlling stKBMs will be essential to allow W7-X and future stellarators to achieve maximum performance.</p

    Stellarator microinstabilities and turbulence at low magnetic shear

    Full text link
    [EN] Gyrokinetic simulations of drift waves in low-magnetic-shear stellarators reveal that simulation domains comprised of multiple turns can be required to properly resolve critical mode structures important in saturation dynamics. Marginally stable eigenmodes important in saturation of ion temperature gradient modes and trapped electron modes in the Helically Symmetric Experiment (HSX) stellarator are observed to have two scales, with the envelope scale determined by the properties of the local magnetic shear and an inner scale determined by the interplay between the local shear and magnetic field-line curvature. Properly resolving these modes removes spurious growth rates that arise for extended modes in zero-magnetic-shear approximations, enabling use of a zero-magnetic-shear technique with smaller simulation domains and attendant cost savings. Analysis of subdominant modes in trapped electron mode (TEM)-driven turbulence reveals that the extended marginally stable modes play an important role in the nonlinear dynamics, and suggests that the properties induced by low magnetic shear may be exploited to provide another route for turbulence saturation.The authors would like to thank F. Jenko for insightful questions that motivated this research and J. Smoniewski and J. H. E. Proll for engaging discussions. This work was supported by US DoE grant nos. DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291. J.E.R. was supported by Agencia Estatal de Investigacion (AEI) under grant TIN2016-75985-P, which includes European Commission ERDF funds. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. This research was performed using the compute resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW-Madison, the Advanced Computing Initiative, the Wisconsin Alumni Research Foundation, the Wisconsin Institutes for Discovery and the National Science Foundation, and is an active member of the Open Science Grid, which is supported by the National Science Foundation and the US Department of Energy's Office of Science.Faber, BJ.; Pueschel, MJ.; Terry, PW.; Hegna, CC.; Roman, JE. (2018). Stellarator microinstabilities and turbulence at low magnetic shear. Journal of Plasma Physics. 84(5). https://doi.org/10.1017/S0022377818001022S845Connor, J. W., & Hastie, R. J. (2004). Microstability in tokamaks with low magnetic shear. Plasma Physics and Controlled Fusion, 46(10), 1501-1535. doi:10.1088/0741-3335/46/10/001Terry, P. W., Faber, B. J., Hegna, C. C., Mirnov, V. V., Pueschel, M. J., & Whelan, G. G. (2018). Saturation scalings of toroidal ion temperature gradient turbulence. Physics of Plasmas, 25(1), 012308. doi:10.1063/1.5007062Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Friedman, B., Carter, T. A., Umansky, M. V., Schaffner, D., & Joseph, I. (2013). Nonlinear instability in simulations of Large Plasma Device turbulence. Physics of Plasmas, 20(5), 055704. doi:10.1063/1.4805084Eiermann, M., & Ernst, O. G. (2006). A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions. SIAM Journal on Numerical Analysis, 44(6), 2481-2504. doi:10.1137/050633846Connor, J. W., Hastie, R. J., & Taylor, J. B. (1978). Shear, Periodicity, and Plasma Ballooning Modes. Physical Review Letters, 40(6), 396-399. doi:10.1103/physrevlett.40.396Xanthopoulos, P., & Jenko, F. (2007). Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X. Physics of Plasmas, 14(4), 042501. doi:10.1063/1.2714328Hegna, C. C., & Hudson, S. R. (2001). Loss of Second-Ballooning Stability in Three-Dimensional Equilibria. Physical Review Letters, 87(3). doi:10.1103/physrevlett.87.035001Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., Pueschel, M. J., Nevins, W. M., & Wang, E. (2011). Role of subdominant stable modes in plasma microturbulence. Physics of Plasmas, 18(5), 055706. doi:10.1063/1.3563536Faber, B. J., Pueschel, M. J., Proll, J. H. E., Xanthopoulos, P., Terry, P. W., Hegna, C. C., … Talmadge, J. N. (2015). Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator. Physics of Plasmas, 22(7), 072305. doi:10.1063/1.4926510Sugama, H., & Watanabe, T.-H. (2006). Collisionless damping of zonal flows in helical systems. Physics of Plasmas, 13(1), 012501. doi:10.1063/1.2149311Hegna, C. C., Terry, P. W., & Faber, B. J. (2018). Theory of ITG turbulent saturation in stellarators: Identifying mechanisms to reduce turbulent transport. Physics of Plasmas, 25(2), 022511. doi:10.1063/1.5018198Zocco, A., Xanthopoulos, P., Doerk, H., Connor, J. W., & Helander, P. (2018). Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas. Journal of Plasma Physics, 84(1). doi:10.1017/s0022377817000988Merz, F. 2008 Gyrokinetic simulation of multimode plasma turbulence. PhD thesis.Dorland, W., Jenko, F., Kotschenreuther, M., & Rogers, B. N. (2000). Electron Temperature Gradient Turbulence. Physical Review Letters, 85(26), 5579-5582. doi:10.1103/physrevlett.85.5579Xanthopoulos, P., Cooper, W. A., Jenko, F., Turkin, Y., Runov, A., & Geiger, J. (2009). A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations. Physics of Plasmas, 16(8), 082303. doi:10.1063/1.3187907Dinklage, A., Beidler, C. D., Helander, P., Fuchert, G., Maaßberg, H., … Zhang, D. (2018). Magnetic configuration effects on the Wendelstein 7-X stellarator. Nature Physics, 14(8), 855-860. doi:10.1038/s41567-018-0141-9Hatch, D. R., Kotschenreuther, M., Mahajan, S., Valanju, P., Jenko, F., Told, D., … Saarelma, S. (2016). Microtearing turbulence limiting the JET-ILW pedestal. Nuclear Fusion, 56(10), 104003. doi:10.1088/0029-5515/56/10/104003Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., & Nevins, W. M. (2011). Saturation of Gyrokinetic Turbulence through Damped Eigenmodes. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115003Proll, J. H. E., Xanthopoulos, P., & Helander, P. (2013). Collisionless microinstabilities in stellarators. II. Numerical simulations. Physics of Plasmas, 20(12), 122506. doi:10.1063/1.4846835Whelan, G. G., Pueschel, M. J., & Terry, P. W. (2018). Nonlinear Electromagnetic Stabilization of Plasma Microturbulence. Physical Review Letters, 120(17). doi:10.1103/physrevlett.120.175002Friedman, B., & Carter, T. A. (2014). Linear Technique to Understand Non-Normal Turbulence Applied to a Magnetized Plasma. Physical Review Letters, 113(2). doi:10.1103/physrevlett.113.025003High mode number stability of an axisymmetric toroidal plasma. (1979). Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 365(1720), 1-17. doi:10.1098/rspa.1979.0001Boozer, A. H. (1998). What is a stellarator? Physics of Plasmas, 5(5), 1647-1655. doi:10.1063/1.872833Boozer, A. H. (1981). Plasma equilibrium with rational magnetic surfaces. Physics of Fluids, 24(11), 1999. doi:10.1063/1.863297Dewar, R. L. (1983). Ballooning mode spectrum in general toroidal systems. Physics of Fluids, 26(10), 3038. doi:10.1063/1.864028Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N., & Shohet, J. L. (1995). The Helically Symmetric Experiment, (HSX) Goals, Design and Status. Fusion Technology, 27(3T), 273-277. doi:10.13182/fst95-a11947086Bhattacharjee, A. (1983). Drift waves in a straight stellarator. Physics of Fluids, 26(4), 880. doi:10.1063/1.864229Baumgaertel, J. A., Belli, E. A., Dorland, W., Guttenfelder, W., Hammett, G. W., Mikkelsen, D. R., … Xanthopoulos, P. (2011). Simulating gyrokinetic microinstabilities in stellarator geometry with GS2. Physics of Plasmas, 18(12), 122301. doi:10.1063/1.3662064Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., … Whaley, R. C. (1997). ScaLAPACK Users’ Guide. doi:10.1137/1.9780898719642Martin, M. F., Landreman, M., Xanthopoulos, P., Mandell, N. R., & Dorland, W. (2018). The parallel boundary condition for turbulence simulations in low magnetic shear devices. Plasma Physics and Controlled Fusion, 60(9), 095008. doi:10.1088/1361-6587/aad38aPlunk, G. G., Xanthopoulos, P., & Helander, P. (2017). Distinct Turbulence Saturation Regimes in Stellarators. Physical Review Letters, 118(10). doi:10.1103/physrevlett.118.105002Candy, J., Waltz, R. E., & Rosenbluth, M. N. (2004). Smoothness of turbulent transport across a minimum-q surface. Physics of Plasmas, 11(5), 1879-1890. doi:10.1063/1.1689967Nagaoka, K., Takahashi, H., Murakami, S., Nakano, H., Takeiri, Y., Tsuchiya, H., … Komori, A. (2015). Integrated discharge scenario for high-temperature helical plasma in LHD. Nuclear Fusion, 55(11), 113020. doi:10.1088/0029-5515/55/11/113020Canik, J. M., Anderson, D. T., Anderson, F. S. B., Likin, K. M., Talmadge, J. N., & Zhai, K. (2007). Experimental Demonstration of Improved Neoclassical Transport with Quasihelical Symmetry. Physical Review Letters, 98(8). doi:10.1103/physrevlett.98.085002Dimits, A. M., Williams, T. J., Byers, J. A., & Cohen, B. I. (1996). Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. Physical Review Letters, 77(1), 71-74. doi:10.1103/physrevlett.77.71Beer, M. A., Cowley, S. C., & Hammett, G. W. (1995). Field‐aligned coordinates for nonlinear simulations of tokamak turbulence. Physics of Plasmas, 2(7), 2687-2700. doi:10.1063/1.871232Gates, D. A., Anderson, D., Anderson, S., Zarnstorff, M., Spong, D. A., Weitzner, H., … Glasser, A. H. (2018). Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee. Journal of Fusion Energy, 37(1), 51-94. doi:10.1007/s10894-018-0152-7Helander, P. (2014). Theory of plasma confinement in non-axisymmetric magnetic fields. Reports on Progress in Physics, 77(8), 087001. doi:10.1088/0034-4885/77/8/087001Peeters, A. G., Camenen, Y., Casson, F. J., Hornsby, W. A., Snodin, A. P., Strintzi, D., & Szepesi, G. (2009). The nonlinear gyro-kinetic flux tube code GKW. Computer Physics Communications, 180(12), 2650-2672. doi:10.1016/j.cpc.2009.07.001Jenko, F., Dorland, W., Kotschenreuther, M., & Rogers, B. N. (2000). Electron temperature gradient driven turbulence. Physics of Plasmas, 7(5), 1904-1910. doi:10.1063/1.874014Fulton, D. P., Lin, Z., Holod, I., & Xiao, Y. (2014). Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities. Physics of Plasmas, 21(4), 042110. doi:10.1063/1.4871387Bañón Navarro, A., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T., & Jenko, F. (2011). Free energy balance in gyrokinetic turbulence. Physics of Plasmas, 18(9), 092303. doi:10.1063/1.3632077Xanthopoulos, P., Merz, F., Görler, T., & Jenko, F. (2007). Nonlinear Gyrokinetic Simulations of Ion-Temperature-Gradient Turbulence for the Optimized Wendelstein 7-X Stellarator. Physical Review Letters, 99(3). doi:10.1103/physrevlett.99.035002Goldhirsch, L., Orszag, S. A., & Maulik, B. K. (1987). An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices. Journal of Scientific Computing, 2(1), 33-58. doi:10.1007/bf01061511Plunk, G. G., Helander, P., Xanthopoulos, P., & Connor, J. W. (2014). Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Physics of Plasmas, 21(3), 032112. doi:10.1063/1.4868412Nadeem, M., Rafiq, T., & Persson, M. (2001). Local magnetic shear and drift waves in stellarators. Physics of Plasmas, 8(10), 4375-4385. doi:10.1063/1.1396842Candy, J., & Waltz, R. E. (2003). An Eulerian gyrokinetic-Maxwell solver. Journal of Computational Physics, 186(2), 545-581. doi:10.1016/s0021-9991(03)00079-2Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721xTerry, P. W., Baver, D. A., & Gupta, S. (2006). Role of stable eigenmodes in saturated local plasma turbulence. Physics of Plasmas, 13(2), 022307. doi:10.1063/1.2168453Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778Cuthbert, P., & Dewar, R. L. (2000). Anderson-localized ballooning modes in general toroidal plasmas. Physics of Plasmas, 7(6), 2302-2305. doi:10.1063/1.874064Waltz, R. E., & Boozer, A. H. (1993). Local shear in general magnetic stellarator geometry. Physics of Fluids B: Plasma Physics, 5(7), 2201-2205. doi:10.1063/1.860754Pueschel, M. J., Faber, B. J., Citrin, J., Hegna, C. C., Terry, P. W., & Hatch, D. R. (2016). Stellarator Turbulence: Subdominant Eigenmodes and Quasilinear Modeling. Physical Review Letters, 116(8). doi:10.1103/physrevlett.116.085001Pearlstein, L. D., & Berk, H. L. (1969). Universal Eigenmode in a Strongly Sheared Magnetic Field. Physical Review Letters, 23(5), 220-222. doi:10.1103/physrevlett.23.220Meerbergen, K., & Sadkane, M. (1999). Using Krylov approximations to the matrix exponential operator in Davidson’s method. Applied Numerical Mathematics, 31(3), 331-351. doi:10.1016/s0168-9274(98)00134-2Chen, Y., Parker, S. E., Wan, W., & Bravenec, R. (2013). Benchmarking gyrokinetic simulations in a toroidal flux-tube. Physics of Plasmas, 20(9), 092511. doi:10.1063/1.482198

    Enhanced transport at high plasma β\beta and sub-threshold kinetic ballooning modes in Wendelstein 7-X

    Full text link
    The effect of plasma pressure β\beta on ion-temperature-gradient-driven (ITG) turbulence is studied in the Wendelstein 7-X (W7-X) stellarator, showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the quasi-stationary state. By zonal-flow erosion, these highly non-ideal KBMs affect ITG saturation and thereby enable higher heat fluxes. Controlling these KBMs will be essential in order to allow W7-X and future stellarators to achieve maximum performance.Comment: 16 pages, 5 figure

    Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall

    Full text link
    The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by E×B\mathbf{E}\times\mathbf{B} rotation shear.Comment: accepted for publication in Nuclear Fusio

    Reduced models for ETG transport in the pedestal

    Get PDF
    This paper reports on the development of reduced models for electron temperature gradient (ETG) driven transport in the pedestal. Model development is enabled by a set of 61 nonlinear gyrokinetic simulations with input parameters taken from the pedestals in a broad range of experimental scenarios. The simulation data has been consolidated in a new database for gyrokinetic simulation data, the Multiscale Gyrokinetic Database (MGKDB), facilitating the analysis. The modeling approach may be considered a generalization of the standard quasilinear mixing length procedure. The parameter η, the ratio of the density to temperature gradient scale length, emerges as the key parameter for formulating an effective saturation rule. With a single order-unity fitting coefficient, the model achieves an RMS error of 15%. A similar model for ETG particle flux is also described. We also present simple algebraic expressions for the transport informed by an algorithm for symbolic regression.</p
    corecore