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Abstract
Microtearing instability is one of the major sources of turbulent transport in high-β tokamaks.
These modes lead to very localized transport at low-order rational magnetic field lines, and we
show that flattening of the local electron temperature gradient at these rational surfaces plays an
important role in setting the saturated flux level in microtearing turbulence. This process
depends crucially on the density of rational surfaces, and thus the system-size, and gives rise to
a worse-than-gyro-Bohm transport scaling for system-sizes typical of existing tokamaks and
simulations.

Keywords: plasma, microturbulence, tokamak, microtearing, microtearing saturation,
tokamak turbulence scaling

(Some figures may appear in colour only in the online journal)

1. Introduction

Confinement in tokamaks is enabled by magnetic field lines
that trace out nested toroidal surfaces. On rational surfaces,
the field lines connect back to themselves after integer num-
bers of poloidal and toroidal turns; certain electromagnetic
plasma instabilities, such as the microtearing modes of interest
here, are localized near these rational surfaces, and break the
nested topology by forming magnetic islands [1–3]. Micro-
tearing modes may have a significant impact on confinement,
especially in high-β spherical tokamaks [4] where electromag-
netic instabilities tend to be more unstable [5–7], and hence
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understanding microtearing transport is crucial for designing
large spherical tokamak reactors such as STEP [8]. They also
are believed to be important in the pedestal in conventional
tokamaks [9].

Microtearing modes are characterized by radially-narrow
parallel electron current layers that are driven resonantly at
the rational surface and associated magnetic islands. While
various branches of microtearing modes have been identi-
fied, including those driven by the time-dependent thermal
force [10] or by curvature [11, 12], and are present in various
collisionality regimes [13–16], the electron temperature gradi-
ent remains a necessary condition for instability in all cases.
Previous works have reported various microtearing satura-
tion mechanisms: via energy transfer to long wavelengths [2]
or to short wavelengths [17], via cross-scale coupling with
electron temperature gradient modes [18], by background
shear flow [6] or zonal fields [19], etc. However, despite
these advances, predicting saturation levels remains a chal-
lenging task. We investigate a previously studied [17, 20, 21]
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microtearing turbulence case (known to be numerically tract-
able) in simple geometry, resolving only the ion scales, in
the absence of background flow shear, and demonstrate a
saturation mechanism where the magnetic islands associated
with the resonant current layers flatten the electron temperat-
ure gradient, thereby reducing the linear drive at the rational
surfaces.

The radial width of the resonant region at the rational sur-
faces is generally of the order of few ion Larmor radii and is
set by the parallel correlation length in linear theory which
scales with the square root of the mass ratio between ions
and electrons [22]. Nonlinearly, the flux associated with these
modes, although slightly broadened, is still localized near the
rational surfaces. This is already known to be important in set-
ting global flux levels in the pedestal [9]. In the most extreme
case, if turbulent diffusivity is sufficiently large and localized
near low-order rational surfaces, the system will remove the
local driving gradients, increase the gradients away from the
low-order rational surfaces, and saturate in a zero-flux state.
In this work, we find a less extreme version of this process
occurring in a standard microtearing regime. We make a scal-
ing argument to quantify this effect and suggest that future
reactor-size devices subject to microtearing turbulence may
perform worse that expected.

In simulations of microtearing turbulence, runaway states
quite often develop with extreme flux levels. In this work, we
do not directly address how and where this process occurs,
although we see this occur in certain of our simulations.

We proceed by demonstrating the strong electron-
temperature-gradient flattening at low-order rationals in
gyrokinetic simulations, and showing that this allows satura-
tion by reducing mode drive. We test the impact of the various
saturation mechanisms by suppressing zonal modulations and
show the dominance of the temperature corrugations. Lastly,
we consider system-size scaling and explain the origin of a
non-gyro-Bohm scaling.

2. Simulation set-up

Our numerical investigation uses flux-tube and global Gene
gyrokinetic simulations [23, 24]. In the flux-tube version [25],
the background quantities and their gradients are assumed con-
stant over its radial domain [26]. The global simulations, on
the other hand, can accommodate more realistic background
profile variations, but in general may be more computationally
expensive, and furthermore, setting appropriate boundary con-
ditions, sources etc can prove difficult [24, 27]. By comparing
these two simulation types, we are able to determine whether
the more complicated global physics is playing an important
role [28].

The simulations use a field-aligned coordinate system [25]
where x is the radial coordinate, y the binormal coordin-
ate and z the parallel coordinate. The binormal wavenumber
ky = nq0/x0, where n is the toroidal mode number and q0 is
the safety factor at the radial position x0 where the simula-
tion is centered. Parallel velocity v∥ and magnetic moment
µ are the velocity space coordinates. We use the simple

microtearing-dominated equilibrium used in [17, 21], mod-
elling the outer core region of a tokamak. Concentric circu-
lar flux-surface geometry [29] is considered with an inverse
aspect ratio ϵ= x0/R= 0.15. An electron-ion mass ratio of
mi/me = 1836, temperature ratio of Ti,0/Te,0 = 1 and normal-
ized electron pressure of βe = 0.4% are considered. To model
collisions, the linearized Landau operator is used with an
electron-ion collision frequency νei/(vth,e/R) = 0.02, where
vth,s = (Ts,0/ms)

1/2 is the thermal velocity of species s. δB∥
fluctuations are not included.

In the flux-tube simulations, a safety factor of q0 = 3 and
magnetic shear ŝ= 1 are considered. The inverse of the dens-
ity, ion temperature and electron temperature background
gradient scale lengths, normalized to the major radius R,
are R/Ln = 1, R/LTi = 0 and R/LTe = 4.5, respectively. The
standard nonlinear flux-tube simulation considered in this
work has a minimum binormal wavenumber of ky,minρi = 0.02
(Ly = 314.2ρi), radial width of Lx = 150ρi and grid resolutions
given byNx×Ny×Nz×Nv∥ ×Nµ = 192× 48× 16× 36× 8.
It is run until normalized time 2000R/vth,i (max lin. growth rate
= 0.018vth,i/R) and saturates to give a gyro-Bohm normalized
electron electromagnetic heat flux of Qe,em/QGB = 7.9 (see
figure 5).

The corresponding global simulations, centered at x0 =
0.5a, span a radial width of either Lx = 0.15a or 0.3a, where
a is the tokamak minor radius. A quadratic q-profile of the
form q(x) = 1.5+ 6(x/a)2 is considered. The radial back-
ground temperature and density profiles are of the form As =
exp[−κAs ϵ ∆As tanh((x− x0)/(a∆As))] where As represents
the temperature or density of species s; κn = 1, κTi = 0, κTe =
4.5 and ∆n=∆Ti =∆Te = 0.3. The numerical resolutions
for the simulation with ρ⋆ = ρi/a= 0.004 and Lx = 0.3a are
Nx×Ny×Nz×Nv∥ ×Nµ = 128× 36× 16× 36× 16. Krook
heat and particle sources (see [30] for details) are also
employed with a source rate of γh = γp = 0.015vth,i/R, and
with radial smoothing over 0.09 a applied so these operators
maintain the global-scale profiles, but do not damp finer-scale
corrugations. The result is a radially smooth heating profile,
and thus a radially smooth quasi-steady state heat flux, as
would be expected in experiment, and consistent with local
simulations. Doubling or halving this source rate is found to
have little effect on the time-averaged density and temperature
profiles, and the heat flux-levels change only by 20% at most.
This is unlike the global simulations of microtearing of [9] that
had heat fluxes that were sensitive to the source level, and had
very radially peaked heat fluxes near low-order rationals.

3. Te flattening at low-order rational surfaces

Modes at a specific toroidal mode number ky create magnetic
islands around the resonantly driven current layers at their
respective mode rational surfaces (MRSs). Note that the dis-
tance betweenMRSs for a given ky is 1/(ŝky) in flux-tube sim-
ulations. The MRS of all ky radially align at the lowest-order
mode rational surface (LMRS), where the magnetic islands
can persist even in the turbulent phase. For the standard non-
linear flux-tube simulation, this can be seen at the LMRSs
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Figure 1. Poincaré plot of magnetic field lines intersecting the
outboard midplane for the standard nonlinear simulation at
tvth,i/R= 1750.

at x/ρi =−50, 0 and 50 in the Poincaré plot in figure 1.
The Poincaré plot records the positions where each magnetic
field line crosses the outboard midplane on successive pol-
oidal turns [31, 32]. Each color denotes an individual field
line. Away from the LMRSs, the MRSs of each ky are radi-
ally misaligned and the overlapping magnetic islands give rise
to ergodic regions.

As the electrons move swiftly along the parallel direc-
tion following the perturbed magnetic field associated with
the islands at the low-order MRSs, they also undergo peri-
odic radial excursions. This leads to a short-circuit of the per-
turbed Te profile, leading to its flattening. This can be seen in
figure 2(a), where the green curve denoting the time-averaged
effective temperature gradient ωeff

Te is plotted as a function of
the radial coordinate for the standard nonlinear simulation.ωeff

Te
is defined as the sum of the contributions from the background
temperature gradient and the time-averaged zonal perturbed
temperature gradient, i.e.

ωeff
Te =−dT0,e/dx

T0,e/R
−

⟨∂δTe/∂x⟩yzt
T0,e/R

. (1)

The perturbed temperature is defined as δTe =
(me/n0)

´
v2δfed

3v− (Te,0/n0)
´
δfed

3v, where δfe is the per-
turbed electron distribution function, and the flux-surface
average, denoted by ⟨·⟩yz, extracts the zonal part.

Time-averaged ωeff
Te in global simulations (both Lx = 0.15a

and 0.3 a) too show similar flattenings at low-order rational
surfaces, as shown in figure 2(b) for the runs with Lx = 0.3a.
Note that for the two low-ρ⋆ global simulations having Lx =
0.3a, the time-average is taken over the initial saturated state
before they ‘run away’; more on this in section 6.

One may also understand the temperature flattening as
a consequence of turbulence self-interaction—a mechanism

Figure 2. Time-averaged ωeff
Te as a function of the radial coordinate.

(a) Flux-tube simulation scan over ky,minρi. Dashed lines denote
position of LMRSs for the ky,minρi = 0.02 run. (b) Global
simulation scan over ρ⋆. Dashed lines denote specific qs = m/n
rational surfaces. Solid black line denotes the background gradient.

wheremodes that are significantly extended along the field line
‘bite their tails’ at the rational surfaces [33, 34]. In the case of
microtearing modes, the parallel electron heat current dens-
ity qe,∥ =

´
v3∥δfed

3v which is extended along the field line,
interacts with the A∥ of the same eigenmode, to drive zonal
parallel electron temperature perturbations ⟨δTe,∥⟩yz, leading
to its flattening at MRSs. Here, δTe,∥ is defined as δTe,∥ =
(me/n0)

´
v2∥δfed

3v for convenience.

Taking the v2∥ moment and the flux-surface average of the
gyrokinetic Vlasov equation, one arrives at an equation for the
time evolution of the zonal δTe,∥. Since we are interested in the
microtearing mode, only the electromagnetic (∝ A∥) nonlin-
ear term need to be considered. Furthermore, the gyro-average
over A∥ may be ignored given that it has a radially broad struc-
ture as shown in figure 3. These approximations helps one to
obtain the relation

∂⟨δTe,∥⟩y
∂t

≈−me

n0

1
C

∂

∂x

∑
ky

ikyq̂e,∥,ky Â
∗
∥,ky , (2)

where the constant C = B0/|∇x×∇y|. The linear structures of
q̂e,∥,ky and Â∥,ky for kyρi = 0.04 are plotted with dashed lines in
figure 3. The product of the two, proportional to a linear heat
flux contribution, drives a zonal δTe,∥ that leads to the flatten-
ing of the parallel electron temperature at eachMRS. The same
process repeats for the perpendicular electron temperature.

However, note a significant broadening of the time-
averaged q̂e,∥,ky in nonlinear simulation, also shown in figure 3
with a solid red line. A detailed description of this nonlin-
ear broadening mechanism is given in [34, 35] and can be
summarized as follows. The radially narrow linear eigenmode
structures lead to extended tails in kx−Fourier space and in bal-
looning representation (called ‘giant tails’ [36]). However, in
a nonlinear simulation, only the first few linearly coupled kx-
Fourier modes starting from kx = 0 of the eigenmode are able
to retain their linear characteristics, i.e. their high amplitudes
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Figure 3. Parallel vector potential Â∥,ky (black) and parallel electron
heat current q̂e,ky (red) for the microtearing mode with kyρi = 0.04.
The linear eigenmode is shown in dashed lines and the time-
averaged nonlinear data in solid lines, all normalized by their
maximum.

and relative phase differences with the kx = 0 mode, whereas
the Fourier modes further away in the tail undergo a significant
reduction in their amplitudes as a result of nonlinear couplings,
implying a broadening in real space. The width of the flattened
electron temperature is therefore also broadened.

4. Microtearing stability with corrugated
background gradients

Now, we consider the linear stability of microtearing modes
when the effective electron temperature gradient ωeff

Te has local
flattenings at LMRSs. This is equivalent to the tertiary instabil-
ity analysis of zonal flows [37], except with a fixed temperature
corrugation rather than a zonal flow pattern.

We perform the same nonlinear local simulation but with
only two ky—the zonal ky = 0 mode and an unstable micro-
tearing mode ky = 0.02ρ−1

i . The zonal mode is reinitialized
at each time-step such that the effective gradient ωeff

Te remains
constant in time and has local flattenings at LMRSs as shown
by the dashed magenta curves in figure 4(a), and resembling
the time-averaged ωeff

Te in the standard nonlinear simulation
shown by the green curve. The kyρi = 0.02 mode is then ini-
tialized to a low seed-level amplitude and let to evolve in time
atop the background of the fixed effective gradient. The simu-
lation is then repeated for different values of ωeff

Te at the MRS,
and the growth rate of the microtearing mode is measured for
each case.

Since the resonant current drive leading to the microtearing
instability is also localized at the MRS, we expect the growth
rate of the microtearing modes considered in these tertiary
instability simulations to be set mostly by the effective gradi-
ent ωeff

Te,MRS at the MRS, i.e. the temperature gradient away
fromMRS is of little significance. This is verified in figure 4(b)
by the close match between the growth rate obtained from the
tertiary instability simulations plotted as a function of ωeff

Te,MRS
(magenta) and the growth rate obtained from standard linear
simulations plotted as a function of R/LTe (blue). The figure
also suggests that the time averaged ωeff

Te,MRS at the LMRSs

Figure 4. (a) Magenta: various fixed ωeff
Te considered for the tertiary

instability simulations. Solid green: time-averaged ωeff
Te in the

standard nonlinear simulation. Dashed green: position of the MRS.
(b) Magenta: growth rate in tertiary instability simulations as a
function of ωeff

Te,MRS. Blue: growth rate in linear simulations as a
function of R/LTe.

in standard nonlinear simulation is set by the critical gradient
of the instability. For ky > ky,min, while the modes at LMRSs
are made almost fully stable, those at MRSs away from the
LMRSs, with lesser flattenings, are made less stable. In gen-
eral, by reducing the local drive of microtearing modes at the
rational surfaces, the system saturates to a state with lesser
flux.

5. Removing zonal modulations

To further investigate the role of electron temperature flat-
tening on saturation, a nonlinear flux-tube simulation is run
while eliminating any local modifications to the temperat-
ure gradient. This is achieved by redefining the zonal com-
ponent of the electron distribution function as

⟨
δf mod

e

⟩
yz
=

⟨δfe⟩yz−K(x)
[
mev2/2Te,0 − 1.5

]
⟨ fM,e⟩yz, where fM,e is the

electron background distribution function—a homogeneous
local Maxwellian. Note that K(x) is only a function of x
and is set at each time-step such that ⟨δTe⟩yz = 0, and there-
fore ωeff

Te = R/LTe throughout the simulation. The heat flux
Qe,em/QGB = 28.1 in this simulation is many times higher than
Qe,em/QGB = 7.9 in the original standard nonlinear simula-
tion, as shown in figure 5, confirming that electron temper-
ature flattening indeed plays a significant role in turbulence
suppression.

Another way to reduce the electron temperature flatten-
ing is by weakening the self-interaction process by increasing
the parallel length Lz = 2πNpol of the simulation volume [33,
34, 38], where Npol indicates the number of times the flux-
tube wraps around poloidally before connecting back to itself.
Given that self-interaction essentially results from ‘modes bit-
ing their tails’, to correctly capture its effects, the domain
length along a field line at a rational surface must be cor-
rectly captured by modelling the full flux-surface, and hence
Npol and the minimum toroidal mode number nmin both
need to be set to 1 [33]. Therefore, by increasing Npol, we
are unphysically weakening the self-interaction process and
the resulting electron temperature flattening. Doubling Npol

(which also doubles the density of LMRSs) is found to
weaken the temperature flattening from ≈70% to ≈20% at
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LMRSs, leading to an increase in the flux level as shown in
figure 5.

While these results confirm that the local flattening of elec-
tron temperature is crucial for correctly predicting the satur-
ated turbulent state, the fact that these simulations, either with
fully eliminated or weakened electron temperature flattenings,
did saturate, indicates the presence of other, less dominant, sat-
uration mechanism(s). Deleting the zonal electrostatic poten-
tial Φ or the zonal A∥ in simulations changes the flux levels at
most by 12%, implying that zonal flows and fields do not play
a significant role in saturation in the case considered. For sim-
ilar parameters, [17] shows that the free-energy flow to short
wavelengths could be another saturation mechanism.

6. Effect of system-size

Given that microtearing turbulence saturation via temperature
flattening happens primarily at rational surfaces, the separation
distance between them and the corresponding finite system-
size effect is crucial. To study this in detail, we first per-
form two system-size scans using global simulations, choos-
ing radial width Lx = 0.15a for one scan and Lx = 0.3a for the
other. As mentioned in the previous section, to correctly cap-
ture the effects of self-interaction including temperature flat-
tening in these simulations, the minimum toroidal mode num-
ber nmin is set to 1.

In general, the heat flux increases with increasing system-
size as shown in figure 5. In the later part of this section, we
explain why this is consistent with a saturationmechanism that
depends on zonal temperature flattening at MRSs. Note that
two sets of global simulations have different flux levels, and
both are also below the local simulation flux levels. This dif-
ference cannot be explained in terms of the zonal-temperature-
gradient flatteningmechanism explored here, so suggests there
is an additional system-size effect dependent on how the radial
domain is treated.

For the global simulation with Lx = 0.3a at the two larger
system sizes denoted by open squares, the fluxes saturate to
a turbulent steady state for at least a duration of 400R/vth,i,
after which they undergo a ‘runaway’ similar to what has been
reported in [9]. The runaway persists even when the grid res-
olutions are increased and the time-step is decreased, which
suggests the origin of these may be physical. Inspecting the
explosive behavior in detail, we find that a very localized
intense process occurs at the current sheet of the magnetic
island at the LMRS. In both local simulations, and simulations
with a narrower global domain, runaway is not seen, indicating
that this process is somehow sensitive to boundary conditions
or spatial background nonuniformity.

To isolate the cause of this system-size dependence, i.e. the
increase in heat flux with increasing system-size, we use
flux-tube simulations. Note that by setting Npol = 1 and by
choosing ky,minρi = nminq0(a/x0)ρ⋆ corresponding to the fun-
damental mode (nmin = 1) of the tokamak, one can simulate
the full flux-surface of interest in the tokamak using flux-tube.
This helps to capture the correct parallel connection length

Figure 5. Blue asterisks and violet cross denote the time-averaged
gyro-Bohm normalized electron electromagnetic heat flux
Qe,em/QGB as a function of ky,minρi in flux-tube simulations with
Npol = 1 and Npol = 2 respectively. Top axis indicates ρ⋆

considering r0/a= 0.5. Black markers indicate flux-tube
simulations with ωeff

Te = R/LTe . The arrow indicates that the
simulation saturates only transiently. Orange squares and green stars
denote global simulations with Lx = 0.3a and Lx = 0.15a
respectively. Open squares indicate a runaway at a later stage.

along the magnetic field lines when the LMRSs correspond
to an integer rational surface. Furthermore, the radial dis-
tance between rational surfaces is also correctly captured.
See figures 6(b) and (c) for comparing the distance between
(L)MRSs in flux-tube and global simulations respectively.
Given that self-interaction is essentially ‘modes biting their
tails’ at rational surfaces, the flux-tube framework offers the
possibility to accurately capture the effect of self-interaction,
while neglecting other finite ρ∗ effects such as profile shear-
ing (see [33, 34] for more details). Given that the separation
distance between the LMRSs is 1/(ŝky,min) in flux-tube simu-
lations, we can study this particular system-size effect through
a scan in ky,minρi. Both Lx/ρi and ky,maxρi are kept fixed in this
scan.

As ky,min is decreased, the radial density of regions with
flattened electron temperature (see figure 2(a)), and hence
weaker linear drive, at low-order MRSs decreases. Concur-
rently, flux increases, as shown by the blue asterisks in figure 5.
That is, the temperature flattening mechanism becomes less
effective in large systems. For the ky,minρi = 0.02 case, the
kyρi = 0.04 mode contributing most to the flux has six MRSs,
three of which at LMRSs experience∼70% flattening, and the
other three at second-order MRSs experience ∼10% flatten-
ing. Whereas for ky,minρi = 0.04, the kyρi = 0.04 mode sees a
∼70% temperature flattening at every MRS, so mode stabiliz-
ation is much more effective. When the electron temperature
flattenings are eliminated, there is still some non-gyro-Bohm
scaling (black markers in figure 5), but this is less consistent.

We suggest a crude model to understand the increase in
flux with increasing system-size that persists in the local limit.
In the turbulent steady state, when the electron heat flux Qe

becomes radially constant, one defines the pointwise diffusiv-
ity via χe ≡ Qe/(dTe/dx) and the radial average
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Figure 6. (a) ky−spectra of electron electromagnetic heat flux for
the flux-tube simulations. Radial position of MRSs for all kyρi ⩽ 0.1
for (b) flux-tube and (c) global simulations with Lx = 0.3a. Thicker
markers denote LMRSs. Vertical lines denote radial box boundaries.

⟨
dTe
dx

⟩
x

=

⟨
Qe

χe

⟩
x

= Qe

⟨
1
χe

⟩
x

, (3)

so ⟨1/χe⟩−1
x is the effective average diffusivity. This analysis

also holds in the source-free region of a tokamak or global
simulation. In the local limit, boundary conditions impose zero
average temperature fluctuation, thusQe = dTe,0/dx⟨1/χe⟩−1

x .
Microtearing modes are now modelled to lead to regions of

high diffusivity near each MRS, which reinforce at LMRSs,
resulting in the temperature-gradient corrugations seen in
simulations.

The set of ‘relevant’ MRSs, i.e. associated with all the
modes contributing significant flux, becomes more radially
dense with decreasing ky,min, because the number of toroidal
modes increases, and each mode has associated rationals sep-
arated by 1/ŝky. This is illustrated in figure 6. In figure 6(a),
ky−spectra of the electron electromagnetic heat flux for the
flux-tube simulations are plotted for the three considered val-
ues of ky,min. Q̂e,em,ky is defined such that the total flux Qe,em =∑

ky
Q̂e,em,kydky, where dky = ky,minρi. In figure 6(b), the posi-

tions of all MRSs associated with kyρi ⩽ 0.1 (i.e. contributing
significant flux) are marked for each of the three simulations,

clearly indicating how the MRSs become radially dense with
decreasing ky,min. The opposite is true for LMRSs (the MRSs
common to all kys and separated by 1/ŝky,min), denoted by
thicker markers in figure 6(b), which become more spaced
apart with decreasing ky,min. For comparison, the correspond-
ing plot for global simulations with Lx = 0.3a is shown in
figure 6(c).

As the harmonic mean of diffusivity sets flux levels, con-
centrating the diffusivity at widely-spaced MRSs (large ky,min,
small system-size) leads to lower flux than distributing it more
evenly at a larger number of closely-spaced MRSs (low ky,min,
large system-size). In an extreme limit, microtearing creates
infinite local diffusivity and completely flattens gradients near
eachMRS, but elsewhere the diffusivity is a small constant χb.
The effective average diffusivity, crudely assuming no over-
lap between flattened regions, is χb/(1−WN), where W is
the proportion of the radius flattened by each toroidal mode
and N is the number of toroidal modes. This leads to a scaling
Qe ∝ 1/(1−w/ρ⋆) where w a dimensionless small parameter
that depends on parameters other than ρ⋆; note that the flux
has a singularity at small enough ρ⋆, where the flux explodes.
This might be related to the increase in flux with system size
seen (figure 5) in our MT simulations. This is also analog-
ous to the avalanche transport arising when transport windows
caused by fast-particle-driven modes overlap across much of
the tokamak [39].

The width W of the high-transport region was assumed
fixed in this simple picture, but actually may increase with
higher flux, and the larger overlap may cause a runaway situ-
ation; this may be tied to failure to reach saturation in certain
microtearing simulations.

Apart from system-size scaling, another possible con-
sequence of electron temperature flattenings and magnetic
islands at low-order rational surfaces is the potential to seed
the growth of NTMs [40]. The possibility for microturbulence
to excite NTMs via nonlinear coupling has been demonstrated
in the past [41]. Furthermore, to experimentally verify our res-
ults, one may measure the electron temperature and look for
flattenings near rational surfaces, similar to previous investiga-
tions of ITG turbulence [42]. One may also be able to measure
low toroidal mode number magnetic perturbations associated
with the microtearing islands in external magnetic coils; for
instance, the radial magnetic perturbation associated with the
islands is (δBx/B0)/(ρi/R)≃ 0.14 in the standard nonlinear
simulation.

7. Conclusions

In conclusion, the fast motion of electrons across the mag-
netic islands at the LMRSs short-circuit the electron temper-
ature, resulting in local electron temperature flattening, which
then decreases the local linear drive ofmicrotearingmodes and
allows lower saturated transport levels than when this process
is artificially suppressed. The spacing and width of the low-
confinement regions near low-order rationals are crucial, and
this provides a pathway to understand microtearing saturation
(or lack thereof); one direct consequence is that microtearing
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turbulent transport and its study are more important in larger
future devices than previously thought.

Note that microtearing saturation mechanisms that depend
on zonal corrugations of other quantities, such as zonal fields
or flows at rationals, would also be expected to show the
same non-gyro-Bohm dependence, due to the same density-
of-rationals argument.

We note that there are various important unanswered ques-
tions about size-scaling and global effects for microtearing
transport. For example, the transport level is also found to be
sensitive to the nature (global versus local) and radial extent
of the simulation domain. This is perhaps not surprising given
that the field perturbations of microtearing modes are radially
extended, even though they cause localized transport. Also, we
do not know how the runaway process occurs, except that it
is the result of a localized intense event in the current sheet
around a magnetic island. Only some of the simulations here
seem subject to this process, and this also provides some clues.
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