29 research outputs found

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

    Get PDF
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)

    The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse

    Get PDF
    Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity.

    Get PDF
    Heterozygosity for human () dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the promoter. The patients\u27 cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with DN mutations, ZNF341-deficient patients lack T helper 17 (T17) cells, have an excess of T2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the transcription-dependent autoinduction and sustained activity of STAT3

    FXYD6 is a novel regulator of Na,K-ATPase expressed in the inner ear.

    No full text
    The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endolymph ionic composition and the endocochlear potential. A key protein in the maintenance of the electrochemical composition of the endolymph is the Na,K-ATPase. In this study, we have looked for the presence in the rat inner ear of members of the FXYD protein family, recently identified as tissue-specific modulators of Na,K-ATPase. Only FXYD6 is detected at the protein level. FXYD6 is expressed in various epithelial cells bordering the endolymph space and in the auditory neurons. FXYD6 co-localizes with Na,K-ATPase in the stria vascularis and can be co-immunoprecipitated with Na,K-ATPase. After expression in Xenopus oocytes, FXYD6 associates with Na,K-ATPase alpha1-beta1 and alpha1-beta2 isozymes, which are preferentially expressed in different regions of the inner ear and also with gastric and non-gastric H,K-ATPases. The apparent K(+) and Na(+) affinities of alpha1-beta1 and alpha1-beta2 isozymes are different. Association of FXYD6 with Na,K-ATPase alpha1-beta1 isozymes slightly decreases their apparent K(+) affinity and significantly decreases their apparent Na(+) affinity. On the other hand, association with alpha1-beta2 isozymes increases their apparent K(+) and Na(+) affinity. The effects of FXYD6 on the apparent Na(+) affinity of Na,K-ATPase and the voltage dependence of its K(+) effect are distinct from other FXYD proteins. In conclusion, this study defines the last FXYD protein of unknown function as a modulator of Na,K-ATPase. Among FXYD protein, FXYD6 is unique in its expression in the inner ear, suggesting a role in endolymph composition

    A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss.

    No full text
    Hearing loss can be caused by a variety of insults, including acoustic trauma and exposure to ototoxins, that principally effect the viability of sensory hair cells via the MAP kinase (MAPK) cell death signaling pathway that incorporates c-Jun N-terminal kinase (JNK). We evaluated the otoprotective efficacy of D-JNKI-1, a cell permeable peptide that blocks the MAPK-JNK signal pathway. The experimental studies included organ cultures of neonatal mouse cochlea exposed to an ototoxic drug and cochleae of adult guinea pigs that were exposed to either an ototoxic drug or acoustic trauma. Results obtained from the organ of Corti explants demonstrated that the MAPK-JNK signal pathway is associated with injury and that blocking of this signal pathway prevented apoptosis in areas of aminoglycoside damage. Treatment of the neomycin-exposed organ of Corti explants with D-JNKI-1 completely prevented hair cell death initiated by this ototoxin. Results from in vivo studies showed that direct application of D-JNKI-1 into the scala tympani of the guinea pig cochlea prevented nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity. Local delivery of D-JNKI-1 also prevented acoustic trauma-induced permanent hearing loss in a dose-dependent manner. These results indicate that the MAPK-JNK signal pathway is involved in both ototoxicity and acoustic trauma-induced hair cell loss and permanent hearing loss. Blocking this signal pathway with D-JNKI-1 is of potential therapeutic value for long-term protection of both the morphological integrity and physiological function of the organ of Corti during times of oxidative stress

    Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity.

    No full text
    Neomycin ototoxicity and electrode insertion trauma both involve activation of the mitogen activated protein kinase (MAPK)/c-Jun-N-terminal kinase (JNK) cell death signal cascade. This article discusses mechanisms of cell death on a cell biology level (e.g. necrosis and apoptosis) and proposes the blocking of JNK signaling as a therapeutic approach for preventing the development of a permanent hearing loss that can be initiated by either neomycin ototoxicity or electrode insertion trauma. Blocking of JNK molecules incorporates the use of a peptide inhibitor (i.e. D-JNKI-1), which is specific for all three isoforms of JNK and has been demonstrated to prevent loss of hearing following either electrode insertion trauma or loss of both hearing and hair cells following exposure to an ototoxic level of neomycin. We present previously unpublished results that control for the effect of perfusate washout of aminoglycoside antibiotic by perfusion of the scala tympani with an inactive form of D-JNKI-1 peptide, i.e. JNKI-1(mut) peptide, which was not presented in the original J. Neurosci. article that tested locally delivered D-JNKI-1 peptide against both noise- and neomycin-induced hearing loss (i.e. Wang, J., Van De Water, T.R., Bonny, C., de Ribaupierre, F., Puel, J.L., Zine, A. 2003a. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J. Neurosci. 23, 8596-8607). D-JNKI-1 is a cell permeable peptide that blocks JNK signaling at the level of the three JNK molecular isoforms, which when blocked prevents the increases in hearing thresholds and the loss of auditory hair cells. This unique therapeutic approach may have clinical application for preventing: (1) hearing loss caused by neomycin ototoxicity; and (2) the progressive component of electrode insertion trauma-induced hearing loss
    corecore