540 research outputs found

    Environment, morphology and stellar populations of bulgeless low surface brightness galaxies

    Full text link
    Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology and stellar population of bulgeless low surface brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and MrM_r \leq 18.8-18.8. The local density parameter Σ5\Sigma_5 is used to trace their environments. We find that, for bulgeless galaxies, the surface brightness does not depend on the environment. The stellar populations are compared for bulgeless LSB galaxies in different environments and for bulgeless LSB galaxies with different morphologies. The stellar populations of LSB galaxies in low density regions are similar to those of LSB galaxies in high density regions. Irregular LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics including mergers rather than by their large scale environment.Comment: 12 pages, 13 figures, Accepted by A&

    Characterizing the red optical sky background fluctuations from narrow-band imaging

    Full text link
    The detection and characterization of the physical properties of very distant galaxies will be one the prominent science case of all future Extremely Large Telescopes, including the 39m E-ELT. Multi-Object Spectroscopic instruments are potentially very important tools for studying these objects, and in particular fiber-based concepts. However, detecting and studying such faint and distant sources will require subtraction of the sky background signal (i.e., between OH airglow lines) with an accuracy of ~1%. This requires a precise and accurate knowledge of the sky background temporal and spatial fluctuations. Using FORS2 narrow-band filter imaging data, we are currently investigating what are the fluctuations of the sky background at ~9000A. We present preliminary results of sky background fluctuations from this study over spatial scales reaching ~4 arcmin, as well as first glimpses into the temporal variations of such fluctuations over timescales of the order of the hour. This study (and other complementary on-going studies) will be essential in designing the next-generation fiber-fed instruments for the E-ELT.Comment: To be published in Proc SPIE 8446: Ground-based & Airborne Instrumentation for Astronomy IV; 12 pages, 3 tables, 8 figure

    Erbium fibre laser pumped nanosecond optical parametric oscillator

    No full text
    We report a periodically-poled lithium niobate optical parametric oscillator pumped by a frequency doubled Q-switched erbium-fibre laser. Pump tuning of the OPO signal with thresholds below 10µJ was demonstrated. Signal tuning range was 0.99-1.45µm

    Permeability and conductivity of platelet-reinforced membranes and composites

    Full text link
    We present large scale simulations of the diffusion constant DD of a random composite consisting of aligned platelets with aspect ratio a/b>>1a/b>>1 in a matrix (with diffusion constant D0D_0) and find that D/D0=1/(1+c1x+c2x2)D/D_0 = 1/(1+ c_1 x + c_2 x^2), where x=avf/bx= a v_f/b and vfv_f is the platelet volume fraction. We demonstrate that for large aspect ratio platelets the pair term (x2x^2) dominates suggesting large property enhancements for these materials. However a small amount of face-to-face ordering of the platelets markedly degrades the efficiency of platelet reinforcement.Comment: RevTeX, 5 pages, 4 figures, submitted to PR

    The Milky Way: An Exceptionally Quiet Galaxy; Implications for the formation of spiral galaxies

    Get PDF
    [Abridged]We compare both the Milky Way and M31 galaxies to local external disk galaxies within the same mass range, using their relative locations in the planes formed by V_flat versus M_K, j_disk, and the average Fe abundance of stars in the galaxy outskirts. We find, for all relationships, that the MW is systematically offset by ~ 1 sigma, showing a significant deficiency in stellar mass, in angular momentum, in disk radius and [Fe/H] in the stars in its outskirts at a given V_flat. On the basis of their location in the M_K, V_flat, and R_d volume, the fraction of spirals like the MW is 7+/-1%, while M31 appears to be a "typical'' spiral. Our Galaxy appears to have escaped any significant merger over the last ~10 Gyrs which may explain why it is deficient by a factor 2 to 3 in stellar mass, angular momentum and outskirts metallicity and then, unrepresentative of the typical spiral. As with M31, most local spirals show evidence for a history shaped mainly by relatively recent merging. We conclude that the standard scenario of secular evolution is generally unable to reproduce the properties of most (if not all) spiral galaxies. However, the so-called "spiral rebuilding'' scenario proposed by Hammer et al. 2005 is consistent with the properties of both distant galaxies and of their descendants - the local spirals.Comment: 14 pages, 6 figures, to appear in Ap

    Theory of itinerant-electron ferromagnetism

    Full text link
    A theory of Kondo lattices or a 1/d1/d expansion theory, with dd spatial dimensionality, is applied to studying itinerant-electron ferromagnetism. Two relevant multi-band models are examined: a band-edge model where the chemical potential is at one of band-edges, the top or bottom of bands, and a flat-band model where one of bands is almost flat or dispersionless and the chemical potential is at the flat band. In both the models, a novel ferromagnetic exchange interaction arises from the virtual exchange of pair excitations of quasiparticles; it has two novel properties such as its strength is in proportion to the effective Fermi energy of quasiparticles and its temperature dependence is responsible for the Curie-Weiss law. When the Hund coupling JJ is strong enough, the superexchange interaction, which arises from the virtual exchange of pair excitations of electrons across the Mott-Hubbard gap, is ferromagnetic. In particular, it is definitely ferromagnetic for any nonzero J>0J>0 in the large limit of band multiplicity. Ferromagnetic instability occurs, when the sum of the two exchange interactions is ferromagnetic and it overcomes the quenching of magnetic moments by the Kondo effect or local quantum spin fluctuations and the suppression of magnetic instability by the mode-mode coupling among intersite spin fluctuations.Comment: 14 pages, 4 figure

    The Tully-Fisher Relation for 25,000 SDSS Galaxies as Function of Environment

    Full text link
    We construct Tully-Fisher relationships (TFRs) in the uu, gg, rr, ii and zz bands and stellar mass TFRs (smTFRs) for a sample of 25,69825,698 late spiral type galaxies (with 0.045<z<0.0850.045<z<0.085) from the Sloan Digital Sky Survey (SDSS) and study the effects of environment on the relation. We use SDSS-measured Balmer emission line widths, vFWHMv_{\rm FWHM}, as a proxy for disc circular velocity, vcircv_{\rm circ}. A priori it is not clear whether we can construct accurate TFRs given the small 3"3" diameter of the fibres used for SDSS spectroscopic measurements. However, we show by modelling the Hα\alpha emission profile as observed through a 3"3" aperture that for galaxies at appropriate redshifts (z>0.045z>0.045) the fibres sample enough of the disc to obtain a linear relationship between vFWHMv_{\rm FWHM} and vcircv_{\rm circ}, allowing us to obtain a TFR and to investigate dependence on other variables. We also develop a methodology for distinguishing between astrophysical and sample bias in the fibre TFR trends. We observe the well-known steepening of the TFR in redder bands in our sample. We divide the sample of galaxies into four equal groups using projected neighbour density (Σ\Sigma) quartiles and find no significant dependence on environment, extending previous work to a wider range of environments and a much larger sample. Having demonstrated that we can construct SDSS-based TFRs is very useful for future applications because of the large sample size available.Comment: accepted for publication in MNRAS. 15 pages, 12 figure

    Clustering properties of galaxies selected in stellar mass: Breaking down the link between luminous and dark matter in massive galaxies from z=0 to z=2

    Full text link
    We present a study on the clustering of a stellar mass selected sample of 18,482 galaxies with stellar masses M*>10^10M(sun) at redshifts 0.4<z<2.0, taken from the Palomar Observatory Wide-field Infrared Survey. We examine the clustering properties of these stellar mass selected samples as a function of redshift and stellar mass, and discuss the implications of measured clustering strengths in terms of their likely halo masses. We find that galaxies with high stellar masses have a progressively higher clustering strength, and amplitude, than galaxies with lower stellar masses. We also find that galaxies within a fixed stellar mass range have a higher clustering strength at higher redshifts. We furthermore use our measured clustering strengths, combined with models from Mo & White (2002), to determine the average total masses of the dark matter haloes hosting these galaxies. We conclude that for all galaxies in our sample the stellar-mass-to-total-mass ratio is always lower than the universal baryonic mass fraction. Using our results, and a compilation from the literature, we furthermore show that there is a strong correlation between stellar-mass-to-total-mass ratio and derived halo masses for central galaxies, such that more massive haloes contain a lower fraction of their mass in the form of stars over our entire redshift range. For central galaxies in haloes with masses M(halo)>10^13M(sun) we find that this ratio is <0.02, much lower than the universal baryonic mass fraction. We show that the remaining baryonic mass is included partially in stars within satellite galaxies in these haloes, and as diffuse hot and warm gas. We also find that, at a fixed stellar mass, the stellar-to-total-mass ratio increases at lower redshifts. This suggests that galaxies at a fixed stellar mass form later in lower mass dark matter haloes, and earlier in massive haloes. We interpret this as a "halo downsizing" effect, however some of this evolution could be attributed to halo assembly bias.Comment: Accepted for publication in MNRAS. 19 pages, 8 figures and 3 tables

    Nanomechanical investigation of soft biological cell adhesion using atomic force microscopy

    Get PDF
    Mechanical coupling between living cells is a complex process that is important for a variety of biological processes. In this study the effects of specific biochemical treatment on cell-to-cell adhesion and single cell mechanics were systematically investigated using atomic force microscopy (AFM) single cell force spectroscopy. Functionalised AFM tipless cantilevers were used for attaching single suspended cells that were brought in contact with substrate cells. Cell-to-cell adhesion parameters, such as maximum unbinding force (F max) and work or energy of detachment (W D), were extracted from the retraction force–displacement (F–d) curves. AFM indentation experiments were performed by indenting single cells with a spherical microbead attached to the cantilever. Hertzian contact model was applied to determine the elastic modulus (E) of single cells. Following treatment of the cells with neutralising antibody for epithelial (E)-cadherin, F max was increased by 25%, whereas W D decreased by 11% in response to a 43% increase in E. The results suggest that although the adhesion force between cells was increased after treatment, the energy of adhesion was decreased due to the reduced displacement separation as manifested by the loss of elastic deformation. Conclusively, changes in single cell mechanics are important underlying factors contributing to cell-to-cell adhesion and hence cytomechanical characterization is critical for cell adhesion measurements

    Bulge growth through disk instabilities in high-redshift galaxies

    Full text link
    The role of disk instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disk galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges. This secular growth of bulges in modern disk galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudo-bulges at slow rates and with long star-formation timescales. Disk instabilities at high redshift (z>1) in moderate-mass to massive galaxies (10^10 to a few 10^11 Msun of stars) are very different from those found in modern spiral galaxies. High-redshift disks are globally unstable and fragment into giant clumps containing 10^8-10^9 Msun of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disk evolution and bulge growth through various mechanisms, on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 10^8 yr. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick disks and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disk instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.Comment: 37 pages, 9 figures. Invited refereed review to appear in "Galactic Bulges", E. Laurikainen, D. Gadotti, R. Peletier (eds.), Springe
    corecore