581 research outputs found

    Gamma-ray blazars: the view from AGILE

    Full text link
    During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high gamma-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous spectral energy distributions of these sources from radio to gamma-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behaviour with respect to the standard models. We present a review of the most interesting AGILE results on these gamma-ray blazars and their multifrequency data.Comment: 25 pages, 10 figures, accepted for publication on Advances in Space Research. Talk presented at the 38th COSPAR Scientific Assembly (Bremen, Germany; July 18-25, 2010

    Probabilistic Algorithmic Knowledge

    Full text link
    The framework of algorithmic knowledge assumes that agents use deterministic knowledge algorithms to compute the facts they explicitly know. We extend the framework to allow for randomized knowledge algorithms. We then characterize the information provided by a randomized knowledge algorithm when its answers have some probability of being incorrect. We formalize this information in terms of evidence; a randomized knowledge algorithm returning ``Yes'' to a query about a fact \phi provides evidence for \phi being true. Finally, we discuss the extent to which this evidence can be used as a basis for decisions.Comment: 26 pages. A preliminary version appeared in Proc. 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK'03

    Powerful high energy emission of the remarkable BL Lac object S5 0716+714

    Full text link
    BL Lac objects of the intermediate subclass (IBLs) are known to emit a substantial fraction of their power in the energy range 0.1--10 GeV. Detecting gamma-ray emission from such sources provides therefore a direct probe of the emission mechanisms and of the underlying powerhouse. The AGILE gamma-ray satellite detected the remarkable IBL S5 0716+714 (z \simeq 0.3) during a high state in the period from 2007 September - October, marked by two very intense flares reaching peak fluxes of 200\times10^{-8} ph / cm^2 s above 100 MeV, with simultaneous optical and X-ray observations. We present here a theoretical model for the two major flares and discuss the overall energetics of the source. We conclude that 0716+714 is among the brightest BL Lac's ever detected at gamma-ray energies. Because of its high power and lack of signs for ongoing accretion or surrounding gas, the source is an ideal candidate to test the maximal power extractable from a rotating supermassive black hole via the pure Blandford-Znajek (BZ) mechanism. We find that during the 2007 gamma-ray flares our source approached or just exceeded the upper limit set by BZ for a black hole of mass 10^9 M_sunComment: 12 pages, 3 figure

    The Agile Alert System For Gamma-Ray Transients

    Full text link
    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.Comment: 34 pages, 9 figures, 5 table

    Towards a runtime verification framework for the Ada Programming Language

    Get PDF
    Runtime verification is an emerging discipline that investigates methods and tools to enable the verification of program properties during the execution of the application. The goal is to complement static analysis approaches, in particular when static verification leads to the explosion of states. Non-functional properties, such as the ones present in real-time systems are an ideal target for this kind of verification methodology, as are usually out of the range of the power and expressiveness of classic static analyses. In this paper, we present a framework that allows real-time programs written in Ada to be augmented with runtime verification capabilities. Our framework provides the infrastructures which is needed to instrument the code with runtime monitors. These monitors are responsible for observing the system and reaching verdicts about whether its behavior is compliant with its non-functional properties. We also sketch a contract language to extend the one currently provided by Ada, with the long term goal of having an elegant way in which runtime monitors can be automatically synthesized and instrumented into the target systems. The usefulness of the proposed approach is demonstrated by showing its use for an application scenario.This work was partially supported by Portuguese National Funds through FCT (Portuguese Founda- tion for Science and Technology) and by ERDF (European Regional Develop- ment Fund) through COMPETE (Operational Programme ’Thematic Factors of Competitiveness’), within projects FCOMP-01-0124-FEDER-037281 (CISTER), FCOMP-01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER- 020486 (AVIACC); and by FCT and EU ARTEMIS JU, within project ARTEMIS/0003/2012, JU grant nr. 333053 (CONCERTO)
    • …
    corecore