
Towards a Runtime Verification Framework for
the Ada Programming Language

André de Matos Pedro1, David Pereira1, Luís Miguel Pinho1, and Jorge Sousa
Pinto2

1 CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal
{anmap,dmrpe,lmp}@isep.ipp.pt

2 HASLab/INESC TEC & Universidade do Minho, Portugal
jsp@di.uminho.pt

Abstract. Runtime verification is an emerging discipline that investi-
gates methods and tools to enable the verification of program properties
during the execution of the application. The goal is to complement static
analysis approaches, in particular when static verification leads to the ex-
plosion of states. Non-functional properties, such as the ones present in
real-time systems are an ideal target for this kind of verification method-
ology, as are usually out of the range of the power and expressiveness of
classic static analyses. In this paper, we present a framework that allows
real-time programs written in Ada to be augmented with runtime ver-
ification capabilities. Our framework provides the infrastructures which
is needed to instrument the code with runtime monitors. These moni-
tors are responsible for observing the system and reaching verdicts about
whether its behavior is compliant with its non-functional properties. We
also sketch a contract language to extend the one currently provided by
Ada, with the long term goal of having an elegant way in which run-
time monitors can be automatically synthesized and instrumented into
the target systems. The usefulness of the proposed approach is demon-
strated by showing its use for an application scenario.

1 Introduction

Real-time embedded systems are usually large and complex, continuously inter-
acting with the external environment. A single real-time system is usually made
of several sub-components concurrently competing for the system’s resources.
Many, if not all, of these sub-components are not produced in-house, and are as-
sembled together from diverse sources, being these sometimes black-boxes to the
system integrator. Some parts may also be Commercial Off-The-Shelf (COTS)
components that, although being economic, have the drawback of introducing
safety concerns, as are usually not accompanied with their source-code and/or
complete specification.

Given the critical role of many of the real-time systems developed, their
source code is subject to exhaustive testing efforts, which may be extremely ex-
pensive. In particular, in what the context of this work relates to, some static

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55635574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

analysis tools have been developed to check the correctness of this class of sys-
tems, in some cases applied with success. Model Checking [5] is among the most
well-known static analysis approaches, but it has the drawback of quickly ex-
ploding due to state space search. Other alternative static analysis approaches
have strong drawbacks as well [12], therefore in the last years Runtime Verifi-
cation (RV) [1, 12] has emerged in order to complement the existing limitations.
RV is concerned with providing theories, languages, and procedures that allow
developers to improve programs with specifications of properties to be checked
upon execution time. In a nutshell, the idea of RV is to transform the extra
specifications and synthesize them into monitors which are added to the system.
A monitor is a computational element that is responsible for observing (part of)
the system and make verdicts about its correct execution.

A real-time system is a paradigmatic case to show what RV can bring in
terms of safety for software. It is easy to identify, at least, two of the more
relevant reasons for such approach: it is very hard to verify during design all
the properties that real-time system must exhibit, which requires that some
properties are verified only during execution; and non-functional properties such
worst-case execution time are extremely hard to prove statically. With a runtime
approach we can have direct access to the states of the tasks of interest and
determine if their conditions hold, thus being able to detect erroneous execution
and act accordingly. The introduction of monitors can be handled by a static
automatic generation tool, from the properties which are to be checked, and can
be time-bounded, since monitors are scheduled as any other task executing in
the system.

Most of the RV frameworks developed so far are for Java, and were designed
to address software development in that programming language. They are based
on formal approaches such as temporal logics [2] and regular expressions [17] and
are directed towards ensuring functional correctness. These formal approaches
provide expressive languages for writing contracts, and for which their synthesis
and implementability are feasible and efficient. Although, ideally, the theory and
tools that resulted from this effort should be used for embedded systems (possibly
exhibiting real-time characteristics), only a couple of works have addressed this
kind of systems. One of these is PathFinder [11], for critical systems written in
Java; the other is CoPilot [14, 13], a functional specification language and tool-
chain for the safe runtime monitoring of ultra-critical software.

In this paper, we present the RMF4Ada framework that aims at comple-
menting the available developments as follows: first, it is an RV framework that
intends to use the safety properties and expressiveness of the Ada programming
language, which we consider very relevant to implement real-time systems; sec-
ondly, we target the specification and synthesis of monitors that are capable
of verifying important non-functional properties, such as meeting deadlines, re-
specting worst-case execution times, among others. The focus of this paper is in
the structure of the code that allows synthesizing monitors and the management
of events and sequences of events. We also describe an extension to the Ada
2012 specification of contracts so that in the future, it can support contracts

for non-functional properties and that can be verified using frameworks such as
this proposal. In order to show the potential of our proposal, we present an Ada
implementation of a mine-drainage controller enriched with RV behavior using
this framework.

2 The RMF4Ada Runtime Verification Framework

In this section we introduce and describe the details of a novel RV framework
for the Ada programming language. RMF4Ada combines aspects of Runtime
Monitoring (RM) (the field that studies ways to define, implement, and con-
trol monitors), formal languages, and software architecture methods to provide
the infrastructure that is needed to equip an Ada program with RV function-
ality. The core of RMF4Ada is a set of Ada packages that provide schemas for
monitors (possibly executing in different patterns), data structures to represent
formal languages and the evaluation of their formulas/terms, and components
to represent and manage the events of the system that one might be interested
in verifying. It is not simply yet another RM framework, since the properties
to be verified or enforced are generated from timed specifications written in the
supported formal languages, in a correct-by-construction way.

The architecture of RMF4Ada is depicted in Figure 1. It is divided into two
sub-components: an Instrumentor and a Creator. The Instrumentor is a tool which
manages the environment for system instrumentation, and that couples moni-
tors that are automatically synthesized a priori by some built-in mechanism of
the framework, or by some third-party tools; the Creator is a tool that synthe-
sizes monitors based on the specification written in the contracts of the original
program; the output is the corresponding Ada executable code. The Creator also
contains mechanisms to generate monitors according to different modes of opera-
tion. The generic dynamics of RMF4Ada is as follows: the Instrumentor generates
an event manager (among other things, responsible for keeping an execution
trace of the system with the correct order, and inform monitors of available
events for consuming), and in-lines instructions in the original source-code that
create the symbolic representation of the events and communicates them to the
event manager; afterwards, the Creator generates the monitors and adds them
to the source-code already instrumented as a new package, in order to produce
the final program with the RV layer working according to the specifications in
the original system.

As we have pointed out earlier, the monitors that are added to the target
system do not need to follow a single execution behavior. RMF4Ada provides
support for two different modes of operation for monitors: time-triggered moni-
toring and event-triggered monitoring. In the time-triggered mode, monitors run
periodically; the time period is calculated beforehand in order to avoid higher
detection delays for the events of interest as we propose in [9, 10]. In the event-
triggered mode, monitors execute when events occur, are considered sporadic
tasks, and consume the available events respecting a given execution pattern.

.ads with specification

new ada files (.adb and .ads)

system (.adb + .ads)

Behavior Modes Theories Modules

Instrumentor

instrumented system ada files (.adb + .ads) +

RMF4Ada

Input

Output

Creator

Controller Event-Manager

Fig. 1. RMF4Ada Architecture

2.1 The Runtime Monitoring Library

We begin with an overview of the library’s structure, and then we introduce
library settings such as events, monitor modes, and monitor context-switches.

Structure. The runtime monitoring library (RML) of RMF4Ada is composed
of three modules: one that encodes the formal systems used to allow the spec-
ification and verification of contracts, other responsible for providing the ab-
stract data types fundamental to construct monitors, and another for building
instances of monitors that can be added to the program under consideration.
These modules are named Theories, Abstract Data Types, and Monitors.

Theories. This module provides an hierarchy of objects that allow to imple-
ment the inductive nature of the sentences of the formal languages that we have
adopted to specify contracts as well as to provide the semantical evaluation func-
tions for these sentences, which are the functions responsible for giving verdicts
when the target system is executing. Currently, we have considered two formal
systems: Timed Regular Expressions (TRE) [15], and Restricted Metric Temporal
Logic with Durations (RMTL-

∫
) [10, 9].

Abstract Data Types. This module provides a set of well-known abstract data
types that are fundamental to architect the rest of the framework. Among these
are included an array-based first in first out (FIFO), a circular FIFO, and an
array-based stack. The abstract data structures themselves are not covered in
this paper, since they are not interesting from the point of view of runtime
monitoring.

Monitors. This module includes the types defining events and event traces. These
are the primitive notions where the activity of the system under consideration
are stored. Another building-block provided is the protected event manager type,
responsible for keeping the events in an internal FIFO. Finally, this library of-
fers the type for monitors, which is specialized according to its operations mode,
i.e., its either a task type implementing a periodic (time-triggered) or a sporadic
(event-triggered) behavior.

Events. In our framework, all events are typed, thus avoiding miss-specification
when instrumentation is performed. Ada discriminant records have been used to
statically ensure the release of the correct events. The creation of events is done
through several functions. Managing events and traces is the responsibility of
the event manager, implemented as an Ada protected type. The event manager
allows the system under observation to enqueue several different types of events
(as we see later), and to pop relevant events from the global trace into the
monitor’s local memory. In the code below we give a small example, describing
how the release of an event can be performed:

−− Generate an event meaning a task_release of Task_A
Ev_A: Events_Concrete.Event :=
Events_Concrete.Generate_Event_Task_Release_Structure (
Name => Task_A,
Monitor_Identifier_List => (Monitor_FormulaOne_Id => true),
Time => Time_Unit_Type(TIME_STAMP)

);

In the code above, we use the Generate_Event_Task_Release_Structure function
to construct a release event. TIME_STAMP is a value in accordance with the type
Time_Unit_Type, and Monitor_Identifier_List is a binary map that indicates
that the event Ev_A could be used by the monitor identified by the value of
Monitor_FormulaOne_Id. The other monitors, if available, need to be assigned
to false, since Monitor_Identifier_List is a static list that contains a Boolean
assigned for each available monitor. The value of Task_A is the identifier of the
event task release.

Monitoring Modes. Different monitor modes correspond to different task
types. For a monitor of type event-based we use the synchronous task con-
trol to suspend the task until the Boolean flag Event_Based_Is_Sporadic is true.
The code to handle the event and read the event from the event manager with
corresponding operations on the memory of the monitor, is the following:

−− Use of Timming Events for waiting order
Ada.Synchronous_Task_Control.Suspend_Until_True (
Event_Based_Is_Sporadic

);

−− Get event from event manager
Event_Manager_For_Monitor.Protected_Event_Manager.readEvent (
Id => Monitor_Id,
E => Event_Manager_For_Monitor.Trace_For_Event_Manager.Trace_Elements

.Event(Tmp_Event)
);

−− Set event to the dedicated trace structure of the monitor
Object.Assign_Event_To_Trace(Event_Manager_For_Monitor.

Trace_For_Event_Manager.Trace_Element_Type(Tmp_Event));

Tmp_Event is the event that has been read from the event manager, and object

the monitor object that contains a trace structure. Note that pushing and pop-

ping event from event manager are protected operations that avoid simultane-
ous concurrent accesses. We use the protected type Protected_Event_Manager

to ensure these operations. In time-triggered monitors identified by type Time_-

Based_Mode_Type we use a periodic task with the delay until sentence. The code
to define this behavior is the following:

−− if there are events to consume discard the new ones
if Event_Manager_For_Monitor.Trace_For_Event_Manager.

Get_Number_Elements(Object.Trace) < 1 then

−− Get list of events
Event_Manager_For_Monitor.Protected_Event_Manager.

readListOfEventsBounded (
Id => Monitor_Id,
List => Temporary_Trace

);

−− Set list of events to trace structure of the monitor object
Event_Manager_For_Monitor.Trace_For_Event_Manager.

Push_ListOfEventsBounded (
Trace => Object.Trace,
Trace_Tmp => Temporary_Trace

);

end if;

Monitor_Id is the identifier used to get the relevant events from the event-
manager, and Temporary_Trace is a temporary local variable used in transferring
events. The if statement maintains the Push_ListOfEventsBounded correct, since
it does not issue any array out of bounds access. In the worst-case scenario, the
Temporary_Trace array list may have the same size, and if one or more elements
exist in the local monitor trace, then the same number of events cannot be fit-
ted. The procedure Monitor_Function that is recursively defined is called in both
modes by the instruction:

Object.Monitor_Function;

Object variable includes all available data structures to store the inputs and
outputs of the function. After establishing the monitor modes a piece of code
need to be coupled for time-triggered mode after the monitor invocation. The
code remaining for this is the following:

if Object.Mode = Time_Based_Mode_Type then
Next_Time := Next_Time + Release_Time;
delay until Next_Time;

end if;

Next_Time is a clock value. The above code block intends to establish the behavior
of the periodic tasks inducing the system to a sleep state until a certain time is
reached to wake-up.

Monitor Context-Switches. Monitors employ high level software context
switches based on one stack data structure to be incrementally evaluated. As

we understand high level context switches are the ones that are implemented by
software with the aid of memory RAM instead of processor registers. The stack
allows us to encode recursive call into a loop, and to control the execution using
some control conditions. We introduce this approach as the subtractive-based ab-
straction for runtime monitoring. Our abstraction begins by popping the generic
structure that contains the tuple and the verdict, which are the inputs and the
outputs of a monitor function, respectively. The procedure that performs a pop
operation is invoked using the following code:

−− get tuple from stack
Monitor_Stack.Pop(
Item => Input_Output_Par,
From => Object.Stack_For_Arguments

);

−− subdivide state to recall monitor function
Tuple := I_O_Par.Tuple;
Verdict := I_O_Par.Verdict;

The context-switch restores the previous outcome values from variables Tuple

and Verdict to be able to call the Procedure_For_Monitor procedure with a
certain trace. The actual tuple represents the last global state of the monitor,
and the last verdict that has been saved, respectively. In Ada the monitor is
called according to the procedure:

Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

One cycle of execution or a step is executed by this instruction, which we denote
as the One_Step restriction. This step may keep the Trace structure intact, indi-
cating that no symbols have been consumed. By the way some executions cannot
consume any event symbol of the trace and a buffer overrun of the local monitor
trace can occur. To tackle this we assume that the execution is progressive and
the monitor execution is recursively defined.

To manage the context-switches we consider four conditional statements.

1. Step-based condition – The evalution of the monitor ends when one step of
the recursive function Procedure_For_Monitor is executed. After each execu-
tion step the state is stored for a further resume of the monitor execution.
The Ada code for this restriction is as simples as follows:

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

2. Symbol-based condition – A symbol consumption is the necessary condi-
tion to suspend the monitor execution, and proceed with the context-switch.
One_Step_Until_Symbol_Is_Consuming is the Boolean variable that activates

this condition in the RML. Any external feedback is required for the proce-
dure Procedure_For_Monitor since the re-execution only continues if the trace
is unchanged. We also assume that the procedure Procedure_For_Monitor is
progressive, which indicates that eventually some event is consumed. The
Ada code that we use to re-evaluate the monitor procedure is the following
one:

while not Trace_Has_Been_Changed(Object.Trace) loop
Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

end loop;

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

Procedure_For_Monitor procedure ends with the push of the I_O_Par into the
Monitor_Stack (accordingly with the restriction One_Step), and the function
Trace_Has_Been_Changed establishes a comparison between two traces (new
and old ones). To be an efficient search over both traces labels are used to
indicate when a trace is equipped with a new event.

3. Time-bounded condition – A temporal bound for the evaluation of a monitor
is used to decide the suspension instant of a context-switch. One_Step_-

Until_T_Time_Units is the Boolean flag used to activate this condition in the
RML. The evaluation is made until the time elapsed exceeds the time allowed
for the monitor execution. To describe such behavior we use the execution
time timers [18]. Such timers allow us to force a monitor to execute in a
stipulated constant time by triggering an interruption when the available
time expires. In that point the last execution is rejected if a step of the
monitor’s execution is not completed. The excerpt of Ada code establishing
such behavior is the following one:

Ada.Execution_Time.Timers.Set_Handler
(ETT_Timer,
Ada.Real_Time.To_Time_Span(CONSTANT_TIME),
Object.Control.Budget_Expired’Access);

while not Object.Control.Budget_Is_Expired loop
Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

end loop;

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

Object.Control.Budget_Expired is a protected procedure that waits for the
end of the step execution of the monitor, Object.Control.Budget_Is_Expired
is the function that returns true if the execution time timer expires or false
otherwise, and CONSTANT_TIME is the constant that indicates the allowed du-
ration for monitor execution.

4. Step-bounded condition – One step of a monitor’s execution is performed n
times. One_Step_N_Times is the condition available in the RML. We tackle
this restriction by a simple for loop, as follows:

for I in 1..Object.Counter−1 loop
Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

end loop;

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

Object.Counter defines how many steps the monitor shall execute before a
context-switch is performed. The remaining code has the same meaning as
described before.

2.2 Library Usage

RML is the support library of RMF4Ada and is available in [7]. Our library
encourages developers to make constraints using strong type checking instead
of condition-based tests. This abstraction allows the software designers to make
less-mistakes when library is used as well as to maintain the integrity of the
instrumentation process. In some cases the memory space can be reduced due to
the message pass using strings is avoided, the registration of monitors avoids any
registration in the event-manager, and the event-manager and monitors discard
any filters since the unexpected types of events cannot take place. An overview of
library’s interconnection is depicted in the Figure 2, including the main blocks,
such as, the static instrumentation, the event-manager protected type, and the
set of tasks representing the monitors generated automatically by some theory.

A program to be instrumented should be designed following the hierarchy
of Ada packages. The main package should be the point where initializations of
RML are made, and the remain packages are necessarily extensions of the root
package. The instrumentation is made using the push procedures of the event-
manager positioned at certain points in program code. We have been included
in our library three types of events each one with several sub-types such as

– task release, task begin, task sleep, task resume, and task end;
– pre and post procedures, protected pre and post procedures, pre and post

functions, and protected pre and post functions; and

Event Manager Monitors/Checkers

In
st
ru
m
en
ta
tio

n

System Program/Controller

Protected Type

Ta
sk

Ty
pe

s

Pr
ot

ec
te

d
Ty

pe
s

Software Timers

Event Buffer

erelease

estart

esleep

eresume

· · ·

Timming EventsTimming Interrupts

Package Task Type

In
te
rc
on

ne
ct
io
nerelease(a,0.1)

erelease(b,0.2)

esleep(a,0.33)
estop(b,0.35)

...

B
in
ar
y
M
ap

Functions/Procedures

C
od

e

Event Garbage Collector

· · ·

Automatically
generated Monitor

Monitor Contract

Synthesized monitor
in Ada

Scheduler

Data Racing Algorithm

Hardware Timers

System Code

Operating System

E
ve
nt

Id
en
tifi

er

Context Switch Support

Fig. 2. Illustration of the interconnection of the element blocks provided by the RML

– pre and post assignments, and protected pre and post assignments.

Other manually specified events are discarded in this paper but will be addressed
for further phases. The integrity of the event sequences that our framework
supplies also should be enforced.

Schedulability analysis can be enforced online using runtime monitoring tech-
niques as well as offline in the development phase. The integrity of the sys-
tem schedulability analysis requires that events triggered by tasks are correctly
pointed and instrumented for each available Ada task type. For instance, this is
enough for online schedulability analysis of periodic resource models as proposed
in [9]. In the case of the preemptive fixed priority scheduler allowed in Ada by
Ravenscar rules, we need to instrument all system tasks in order to provide the
events correctly for event monitoring. Our framework should be able to identify
if a higher priority task trigger an event task begin, then some time units ago an
event task sleep may have occurred. To do it, the framework only needs to select
the last event that has occurred in the event trace provided by event-manager.
This avoids any instrumentation of events at the operating system level (more
precisely at the internals of the scheduler).

We have described a subtractive-based abstraction that leaves us to couple
diverse monitoring models in our framework as well as aiding to ensure finite
execution segments for each execution cycle. The monitor should be fitted into
these abstractions after the synthesis process. A garbage collector also provided
by the event-manager allows us to dynamically remove unnecessary events while
the system is executing. All events are managed by the event-manager entity,
and the interconnection binary map is established to identify the relevant events
for each monitor.

3 Contract Language Extension for Runtime Verification

Currently, the newest version of the Ada programming language – Ada 2012
– provides a language of contracts for the dynamic verification of functional
properties. Subprograms can be equipped with preconditions, postconditions,
dynamic and static predicates, and types can be binded with invariants. However,
the contract language is not enough to address the characteristics of RV that
are supported by RMF4Ada.

In this section, we propose an extension to the current contract language that
is mainly composed of a couple of new syntactic contract constructions such as

1. a construction to establish the type of execution mode of the monitors, and
2. a construction to define the property that the software designer is interested

in checking at runtime.

Our extension proposes the usage of a contract of the form Monitor_Mode => M,
such that M is either the keyword Event_Triggered or the keyword
Time_Triggered representing, respectively, an even-triggered monitoring mode
or a time-triggered monitoring execution mode. Once the modus operandi of
monitors is stated, we will establish formal languages for enforcement of non-
functional properties such as temporal order, and durations. Each monitor spec-
ification is enforced by the usage of the contract Monitor_Case => (T , C), such
that T is the formal language of the contract chosen for property specification,
and C is a sentence of this language that specifies some property of interest for
runtime enforcement. The pair (T , C) has one of the following types:

1. a pair (TRE, α) for runtime contracts based on TREs with α being inductively
defined by

α ::= 0 | 1 | a ∈ Σ |α+ α |αα |α? | 〈α〉I ,

where Σ is the set of all events, and I is a time interval of the form [a..b]
with a, b ∈ R+

0 , or
2. a pair (RMTLD, ϕ) for runtime contracts based on RMTL−

∫
with ϕ being

inductively defined by

β ::= c ∈ R+
0 | x ∈ Lv | duration[β]ϕ,

ϕ ::= p ∈ P | β opβ | notϕ | ϕ orϕ | ϕ Un ϕ | ϕ Sn ϕ | Exxϕ,

where P is the set of propositions for all available events, op ∈ {<,≤, >,≥},
Lv is the set of logic variables, and n is a constant time in R+

0 .

Note that each monitor specification uses the pre-defined mode of operation,
until a new mode of operation is specified.

An event is defined by the introduction of the attribute Event in Ada. We use
the shortcut object’Event(e) for the meaning of the sentence for object’Event

use e. All events are previously defined, including the event ANY, which dictates
that any event can occur. Moreover, we also add the attribute Time to define

timing settings of the task types dealing with periods and WCET that have
been assigned prior to execution.

As we have described, RMF4Ada provides computational support for these
formal systems. There are object hierarchies to represent the (mutually) induc-
tive structure of the terms and the formulas of the two formal systems. Moreover,
evaluation functions for the statements are also included. In the rest of this pa-
per, we will describe the implementation of a safety-critical real-time system in
Ada with the support of RMF4Ada, and we will use the extension of contracts
presented in this section. However, the synthesis of the monitors has been ob-
tained manually, because the tool for doing it automatically is not yet available
at the present time.

4 Experimental Scenario

In this last section, we describe the implementation of a real-time program that
models a mine-drainage scenario in Ada. This scenario has been proposed by
Burns et al. in [4, 3]. The authors propose a mine drainage controller, and a sta-
tion for employers to control and monitor the mine state. The system contains a
water pump that drains the water into the ground, which needs to be switched
off when a critical level of methane is reached. The implementation is available
in [8], and employs our idealized contract extension to the RV. The evaluation of
RMF4Ada for this particular scenario has been performed as follows: first, we have
implemented the mine-drainage scenario guided by the case study presented by
the authors [3]; afterwards, we specified the necessary contracts and synthesized
them into monitors by hand, due to the lack of the Creator tool. Since the In-
strumentor is not currently ready as well, we also performed the instrumentation
by hand. After these steps have been completed successfully, we have compared
the performance of the original implementation with the monitor-enriched one
in order to measure the overhead imposed by the constructions provided by
RMF4Ada.

The graphical interface of the simulator is presented in Fig. 3. We can ob-
serve in the table depicting the monitoring of tasks in Fig. 3 the minimum and
maximum delay values of the computation time of the tasks. The field Count
indicates the number of iterations that one task made in the last ten seconds.
These values will be used as a reference to compare the original system and the
system resulting from its instrumentation and coupling with runtime monitors.
The experiments have been performed on an Intel Core i3-3110M at 2.40GHz
CPU, and 8 GB RAM running on Fedora 18 x64, in a uniprocessor setting. In
the future, we plan to do further experiments where we will use the MaRTE
OS [16] which is an operating system fully implemented in Ada. This allows
us to speculate that since we got good results in a Linux setting without strict
hard real-time constraints on the scheduler side, then we expect better ones in
a native real-time operating system as the one just pointed out.

Fig. 3. Command Line Interface of the Mine Drainage Simulator

Enforcement of Timing properties. Formulas for enforcement of timing
properties have been established for task timing analysis, and for a particular
execution sequence of the simulation environment. Both formulas will be syn-
thesized, producing two monitors in Ada language that can be coupled manually
into the simulator. As a first example of our development, we introduce a con-
tract specification that states that a given task named task T_Simulation always
has a duration smaller than the pre-defined worst-case execution time. It allows
us to monitor a task without using execution time timers, which are highly de-
pendent on the operating system API. However, our approach may contain more
overhead than one using execution time timers since it has been implemented at
a source-level instead of a level closer to the hardware. We are also concerned
by the fact that the behaviors supported by execution time timers are stricter
than the behaviors supported by our monitors, and the expressiveness is incom-
parable: on the one hand, the time isolation is a positive point of our framework
since we can establish that a set of tasks has a certain budget to execute in a cer-
tain period; on the other hand, the overhead is only the big disadvantage when
systems have very strict hardware resources. The task specification using our
contract language for this duration limited task execution case is the following:

task type T_Simulation (period: integer; deadline: integer)
with
Monitor_Mode => Event_Triggered,
Monitor_Case => (RMTLD ,

T_Simulation’Event(Task_Release) next implies
duration[T_Simulation’Time(period)]
T_Simulation’Event(ANY) < T_Simulation’Time(wcet)

);

The Monitor_Case contract defines a RMTL-
∫
formula to be evaluated in event-

triggered mode, ’Event is an attribute that identifies the event or events to be
used, ANY identifies all the events assigned to a certain structure, and a next

implies b is a shortcut to the logic formula ¬a ∨ aU≤n b with a n greater than
the size of the observation as defined in [10]. The synthesis of this monitor can
be found in [6]. A second example is a protected type Protected_Environment

executing a certain timed order. Calls for the protected environment are made
beginning with the release event pre of the function read_CH4 and are followed by
any combination of events with duration of at most twenty milliseconds. Finally,
it ends with the return of the function read_CO2 value identified by the event
post. The specification for this second example is the following:

protected type Protected_Environment
with
Monitor_Mode => Time_Triggered
Monitor_Case => (TRE,
(Protected_Environment.read_CH4’Event(pre) .
<(Protected_Environment’Event(ANY))∗>[0..20] .
Protected_Environment.read_CO2’Event(post))∗

) ,
is
function read_CO2 return CO2_Level_State;
function read_CH4 return CH4_Level_State;
function read_Air_Flow return Air_Exhaust_State;
function read_WaterPipe_Flow return WaterPipe_Flow_State;

end;

The interval [0..20] assumes the time unit of milliseconds, and pre and post are
the events that occur before and after the execution of a function, respectively.
The code resulting from synthesizing both the previous examples can be found in
[8], particularly in the specification files monitor_function_formulaone.ads and
monitor_function_formulatwo.ads, respectively.

Time Isolation. It is important to note that time isolation can be ensured using
our framework by applying directly the established formalization in [9, 10]. In
this work we only need to assume that a task release a certain set of events. Our
Instrumentor tool should be capable to correctly instrument these events. The
time isolation is a major advantage when several systems should be merged in
order to reduce hardware costs, but the level of criticality is ensured and mixed.

4.1 Verdicts

The Instrumentor tool generates four files that are the monitoring.ads, the
monitoring.adb, the spec.ads, and the spec.adb. The Spec package contains
the definition of events used to analyze the system under observation (SUO),
and the trace type. The Monitoring package instantiates the generic packages
provided by RML to be included into the SUO at the instrumentation phase. The
package includes the event-manager definition, the both monitor assignments for
execution using the monitor collection, and a controller to initialize and finalize
the instrumentation before execution begin and end, respectively.

The results are surprisingly positive. The monitor generated by the first
formula introduces a maximum overhead of 11µs for every task iteration of the

task T_Simulator. Considering that a wake up from an absolute delay until the
operation, including one context switch, in Marte OS is 8.8µs [16] in a Pentium
III at 500mhz, the results are satisfactory. We are using one core of an Intel
i3 at 2.4GHz. The monitor generated by the first formula has an estimated
worst case execution time (WCET) of 53µs for one step execution in event-
triggered mode. We can conclude that we have maximum overhead of 11+53µs
for runtime monitoring. This value has been estimated for 202 iterations of the
task T_Simulator or the first ten seconds of one execution.

5 Conclusions

In this paper, we have presented a framework for enabling the instrumentation
of Ada programs with monitors that enforce RV behavior. The evaluation of our
framework shows that the overhead is minimal when compared to the original
system, and that it could even be decreased by making our framework constructs
more efficient and implementing them in an operation system with actual real-
time behavior. Moreover, we have introduced a small extension to the current
Ada contract language for enabling the specification of contracts to be checked by
monitors. Finally, we provided the general structure of the complete framework,
which will include a Creator tool for performing the automatic synthesis of moni-
tors from contracts, and an Instrumentor tool that will automatically instrument
a target program with event notification and adequate monitor operation.

Currently, we use two formal systems to support the construction of con-
tracts, namely, TREs and the RMTL-

∫
timed temporal logic. In the future we

plan to explore further formal systems, and to generalize our current implemen-
tation in order to allow the integration of such new formal systems in a modu-
lar approach, without needing to recompile the framework. Another interesting
point to investigate will be the adequacy of RMF4Ada in a multi-core environ-
ment, which raises new interesting and hard challenges, such as how to deal with
simultaneous events occurring in the different cores, and ways to combine cores
solely for monitoring while having the rest of the cores for executing the code
of the actual application. Finally, we also want to explore the adequacy of the
framework for COTS as internal black-box components, without source-code or
rigorous specification for those components.

Acknowledgments The authors would like to thank the anonymous reviewers for
their comments that helped improve the manuscript. This work was partially
supported by Portuguese National Funds through FCT (Portuguese Founda-
tion for Science and Technology) and by ERDF (European Regional Develop-
ment Fund) through COMPETE (Operational Programme ’Thematic Factors of
Competitiveness’), within projects FCOMP-01-0124-FEDER-037281 (CISTER),
FCOMP-01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-
020486 (AVIACC); and by FCT and EU ARTEMIS JU, within project
ARTEMIS/0003/2012, JU grant nr. 333053 (CONCERTO).

References

1. Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, 2011.

2. P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system specifi-
cation. ACM Comput. Surv., 32(1):12–42, March 2000.

3. A. Burns and T. M. Lin. An engineering process for the verification of real-time
systems. Form. Asp. Comput., 19(1):111–136, March 2007.

4. A. Burns and A. M. Lister. A framework for building dependable systems. Comput.
J., 34(2):173–181, April 1991.

5. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, Cambridge, MA, USA, 1999.

6. André de Matos Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa
Pinto. Monitors provided for the Mine Drainage System Simulator.
http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/examples/mine_
drainage/monitors/. Accessed: 2013-12-15.

7. André de Matos Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa Pinto.
Runtime Monitoring Library for RMF4Ada. http://webpages.cister.isep.ipp.
pt/~anmap/adaeurope14/. Accessed: 2013-12-15.

8. André de Matos Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa Pinto.
The Mine Drainage Simulator Code. http://webpages.cister.isep.ipp.pt/
~anmap/adaeurope14/examples/mine_drainage/system/. Accessed: 2013-12-15.

9. André de Matos Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa Pinto.
Logic-based Schedulability Analysis for Compositional Hard Real-Time Embed-
ded Systems. In Proceedings of the 6th International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, CRTS ’13, 2013.

10. André de Matos Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa Pinto. A
Compositional Monitoring Framework for Hard Real-Time Systems. In Proceedings
of the 6th NASA Formal Methods Symposium, NFM ’14, 2014. To appear.

11. Klaus Havelund and Grigore Rosu. Monitoring Java Programs with Java PathEx-
plorer. Electronic Notes in Theoretical Computer Science, 55(2):200–217, 2001.

12. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
J. Log. Algebr. Program., 78(5):293–303, 2009.

13. Lee Pike, Sebastian Niller, and Nis Wegmann. Runtime verification for ultra-
critical systems. In Proceedings of the Second international conference on Runtime
verification, RV’11, pages 310–324, 2012.

14. Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn Goodloe. Copilot: Monitoring
embedded systems. In Innovations in Systems and Software Engineering: Special
Issue on Software Health Management, 2012.

15. Riccardo Pucella. On equivalences for a class of timed regular expressions. Electr.
Notes Theor. Comput. Sci., 106:315–333, 2004.

16. Mario Aldea Rivas and Michael González Harbour. MaRTE OS: An Ada Kernel
for Real-Time Embedded Applications. In Reliable Software Technologies - Ada-
Europe, volume 2043 of Lecture Notes in Computer Science, pages 305–316, 2001.

17. Koushik Sen. Generating optimal monitors for extended regular expressions. In In
Proc. of the 3rd Workshop on Runtime Verification (RV’03), volume 89 of ENTCS,
pages 162–181, 2003.

18. Juan Zamorano, Alejandro Alonso, JoséAntonio Pulido, and JuanAntonio Puente.
Implementing execution-time clocks for the ada ravenscar profile. In Reliable Soft-
ware Technologies - Ada-Europe 2004, volume 3063, pages 132–143. 2004.

