53 research outputs found

    The indispensability of good operation & maintenance (O&M) manuals in the operation and maintenance of low carbon buildings

    Get PDF
    Increase in energy usage, particularly from fossil fuel sources is widely understood to be responsible for the environmental problems (Climate Change) experienced globally today. Response to mitigating this anthropogenic induced consequence created the need for innovative low carbon and renewable technologies in buildings. In the UK presently, every new building is expected to be low-carbon and energy-efficient. However, it is widely acknowledged that significant differences often exist between designed and in-use performances of the buildings. Clients and end-users of these technologies appear not to be getting long term value for their investments; much attention has not been given to how these innovative technologies can be operated and maintained long into the future. Recent researches also underpin the fact that the wide information gap existing between designers and building end-users is one of the factors responsible for the performance-gap. This paper therefore presents excerpts of a research aimed at exploring a best practice approach to operability and maintainability of low-carbon-buildings. The research methodology involved the use of interviews, surveys and case study. Findings suggest that a properly prepared O&M manual is a potential document that that could bridge this gap and that it is an indispensable tool for the effective and efficient operation and maintenance of low carbon buildings

    Defining complementary tools to the IVI. The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI)

    Full text link
    [EN] The Infrastructure Value Index (IVI) is quickly becoming a standard as a valuable tool to quickly assess the state of urban water infrastructure. However, its simple nature (as a single metric) can mask some valuable information and lead to erroneous conclusions. This paper introduces two complementary tools to IVI: The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI). The IDI is focused on time (compared to the IVI, focused on value), represents an intuitive concept and behaves in a linear way. The joint analysis of IVI and IDI provides results in a more complete understanding of the state of the assets, while maintaining the simplicity of the tools. The Infrastructure Histogram allows for a full evaluation of the infrastructure state and provides a detailed picture of network age compared to its expected life, as well as an order of magnitude of the required investments in the following years.Cabrera Rochera, E.; Estruch-Juan, ME.; Gomez Selles, E.; Del Teso-March, R. (2019). Defining complementary tools to the IVI. The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI). Urban Water Journal. 16(5):343-352. https://doi.org/10.1080/1573062X.2019.1669195S343352165Alegre, H., Vitorino, D., & Coelho, S. (2014). Infrastructure Value Index: A Powerful Modelling Tool for Combined Long-term Planning of Linear and Vertical Assets. Procedia Engineering, 89, 1428-1436. doi:10.1016/j.proeng.2014.11.469Amaral, R., Alegre, H., & Matos, J. S. (2016). A service-oriented approach to assessing the infrastructure value index. Water Science and Technology, 74(2), 542-548. doi:10.2166/wst.2016.250Aware-p.org. 2014. “AWARE-P/Software.” Accessed 25 November 2018. http://www.aware-p.org/np4/software/Baseform. 2018. “Baseform.” Accessed 24 November 2018. https://baseform.com/np4/productCanal de Isabel II Gestión. 2012. Normas Para Redes de Abastecimiento. [Standards for Water Supply Networks.]. https://www.canalgestion.es/es/galeria_ficheros/pie/normativa/normativa/Normas_redes_abastecimiento2012_CYIIG.pdfFrost, and Sullivan. 2011. “Western European Water and Wastewater Utilities Market.” https://store.frost.com/western-european-water-and-wastewater-utilities-market.html#section1Leitão, J. P., Coelho, S. T., Alegre, H., Cardoso, M. A., Silva, M. S., Ramalho, P., … Carriço, N. (2014). Moving urban water infrastructure asset management from science into practice. Urban Water Journal, 13(2), 133-141. doi:10.1080/1573062x.2014.939092Marchionni, V., Cabral, M., Amado, C., & Covas, D. (2016). Estimating Water Supply Infrastructure Cost Using Regression Techniques. Journal of Water Resources Planning and Management, 142(4), 04016003. doi:10.1061/(asce)wr.1943-5452.0000627Marchionni, V., Lopes, N., Mamouros, L., & Covas, D. (2014). Modelling Sewer Systems Costs with Multiple Linear Regression. Water Resources Management, 28(13), 4415-4431. doi:10.1007/s11269-014-0759-zPulido-Velazquez, M., Cabrera Marcet, E., & Garrido Colmenero, A. (2014). Economía del agua y gestión de recursos hídricos. Ingeniería del agua, 18(1), 95. doi:10.4995/ia.2014.3160Rokstad, M. M., Ugarelli, R. M., & Sægrov, S. (2015). Improving data collection strategies and infrastructure asset management tool utilisation through cost benefit considerations. Urban Water Journal, 13(7), 710-726. doi:10.1080/1573062x.2015.102469

    Low cost housing in Indonesia

    No full text
    "A study on low-cost housing initiated and supported by the Canadian International Development Research Centre (IDRC)
    • …
    corecore