12 research outputs found

    Resistance to TRK inhibition mediated by convergent MAPK pathway activation

    No full text
    TRK fusions are found in a variety of cancer types, lead to oncogenic addiction, and strongly predict tumor-agnostic efficacy of TRK inhibition(1-8). With the recent approval of the first selective TRK inhibitor, larotrectinib, for patients with any TRK-fusion-positive adult or pediatric solid tumor, to identify mechanisms of treatment failure after initial response has become of immediate therapeutic relevance. So far, the only known resistance mechanism is the acquisition of on-target TRK kinase domain mutations, which interfere with drug binding and can potentially be addressable through second-generation TRK inhibitors(9-11). Here, we report off-target resistance in patients treated with TRK inhibitors and in patient-derived models, mediated by genomic alterations that converge to activate the mitogen-activated protein kinase (MAPK) pathway. MAPK pathway-directed targeted therapy, administered alone or in combination with TRK inhibition, re-established disease control. Experimental modeling further suggests that upfront dual inhibition of TRK and MEK may delay time to progression in cancer types prone to the genomic acquisition of MAPK pathway-activating alterations. Collectively, these data suggest that a subset of patients will develop off-target mechanisms of resistance to TRK inhibition with potential implications for clinical management and future clinical trial design

    Discovery through clinical sequencing in oncology

    No full text

    Cancer therapy shapes the fitness landscape of clonal hematopoiesis

    No full text
    Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies. Environmental exposures shape patterns of selection for mutations in clonal hematopoiesis. Cancer therapies promote the growth of clones with mutations that are strongly enriched in treatment-related myeloid neoplasms
    corecore