294 research outputs found

    Synthesis and applications of 2,4-disubstituted thiazoles derivatives as small molecule modulators of cellular development

    Get PDF
    Understanding how the structure of molecules relates to their function and biological activity is essential in the development of new analogues with targeted activity. This is especially relevant in mediating developmental processes in mammalian cells and the regulation of stem cell differentiation. In this study, thiazole-containing small molecules were synthesised and investigated for their ability to induce the differentiation of human pluripotent stem cells and their derivatives. Analyses of cell morphology, cell viability, expression of cell surface markers and ability to induce cell differentiation and regulate neurite formation identified the analogue with the longest and most bulky hydrophobic side chain as possessing comparable or enhanced activity to all-trans-retinoic acid (ATRA). Interestingly, a shorter, less bulky, known thiazole compound reported to be isoform selective for the retinoic acid receptor β2 (RARβ2) agonist did not mediate differentiation under the conditions tested; however, activity could be restored by adjusting the structure to a longer, more bulky molecule. These data provide further insight into the complexity of compound design in terms of developing small molecules with specific biological activities to control the development and differentiation of mammalian cells

    Using Advanced Cell Culture Techniques to Differentiate Pluripotent Stem Cells and Recreate Tissue Structures Representative of Teratoma Xenografts

    Get PDF
    Various methods are currently used to investigate human tissue differentiation, including human embryo culture and studies utilising pluripotent stem cells (PSCs) such as in vitro embryoid body formation and in vivo teratoma assays. Each method has its own distinct advantages, yet many are limited due to being unable to achieve the complexity and maturity of tissue structures observed in the developed human. The teratoma xenograft assay allows maturation of more complex tissue derivatives, but this method has ethical issues surrounding animal usage and significant protocol variation. In this study, we have combined three-dimensional (3D) in vitro cell technologies including the common technique of embryoid body (EB) formation with a novel porous scaffold membrane, in order to prolong cell viability and extend the differentiation of PSC derived EBs. This approach enables the formation of more complex morphologically identifiable 3D tissue structures representative of all three primary germ layers. Preliminary in vitro work with the human embryonal carcinoma line TERA2.SP12 demonstrated improved EB viability and enhanced tissue structure formation, comparable to teratocarcinoma xenografts derived in vivo from the same cell line. This is thought to be due to reduced diffusion distances as the shape of the spherical EB transforms and flattens, allowing for improved nutritional/oxygen support to the developing structures over extended periods. Further work with EBs derived from murine embryonic stem cells demonstrated that the formation of a wide range of complex, recognisable tissue structures could be achieved within 2-3 weeks of culture. Rudimentary tissue structures from all three germ layers were present, including epidermal, cartilage and epithelial tissues, again, strongly resembling tissue structure of teratoma xenografts of the same cell line. Proof of concept work with EBs derived from the human embryonic stem cell line H9 also showed the ability to form complex tissue structures within this system. This novel yet simple model offers a controllable, reproducible method to achieve complex tissue formation in vitro. It has the potential to be used to study human developmental processes, as well as offering an animal free alternative method to the teratoma assay to assess the developmental potential of novel stem cell lines

    The action of all-trans-retinoic acid (ATRA) and synthetic retinoid analogues (EC19 and EC23) on human pluripotent stem cells differentiation investigated using single cell infrared microspectroscopy

    Get PDF
    All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We have previously generated synthetic analogues of retinoic acid (EC23 and EC19) which also induce the differentiation of EC cells. Even though EC23 and EC19 have similar chemical structures, they have differing biochemical effects in terms of EC cell differentiation. EC23 induces neuronal differentiation in a manner similar to ATRA, whereas EC19 directs the cells to form epithelial-like derivatives. Previous MALDI-TOF MS analysis examined the response of TERA2.cl.SP12 cells after exposure to ATRA, EC23 and EC19 and further demonstrated the similarly in the effect of ATRA and EC23 activity whilst responses to EC19 were very different. In this study, we show that Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with appropriate scatter correction and multivariate analysis can be used as an effective tool to further investigate the differentiation of human pluripotent stem cells and monitor the alternative affects different retinoid compounds have on the induction of differentiation. FT-IRMS detected differences between cell populations as early as 3 days of compound treatment. Populations of cells treated with different retinoid compounds could easily be distinguished from one another during the early stages of cell differentiation. These data demonstrate that FT-IRMS technology can be used as a sensitive screening technique to monitor the status of the stem cell phenotype and progression of differentiation along alternative pathways in response to different compounds

    Generation of a novel three-dimensional scaffold-based model of the bovine endometrium

    Get PDF
    Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E2 and prostaglandin F2α following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E2 receptor 2 (EP2), prostaglandin E2 receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies

    Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins

    Get PDF
    Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites

    Learning to Think Iconically in the Human and Social Sciences: Iconic Standards of Understanding as a Pivotal Challenge for Method Development

    Get PDF
    Theoretically as well as alongside an empirical research idea, this paper outlines conditions for the development of social scientific empirical methods able to further exploit the iconic potential of the image. Reconstructing the role of formal pictorial elements for the standards of understanding within the medium “image” is considered pivotal in this endeavor. Within the context of language, standards of communication have already been extensively researched. The linguistic format of the narrative, for instance, is well studied. Up to now, though, comparable formal vehicles of iconic semantics have only been examined in aesthetics and art history. Nevertheless, standards of iconic understanding are part of our implicit knowledge, are incessantly in use in everyday practice and, thus, the basis of everyday identity formation. With the help of empirical methods based on an iconic logos we can deepen our understanding of orientations, longings, and anxieties of our time that are often silently conveyed by images. Fashion will be outlined as a prototypical field, in which an empirically based development of such methods might start off

    The Plasmodium Export Element Revisited

    Get PDF
    We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide

    Combinatorial Binding in Human and Mouse Embryonic Stem Cells Identifies Conserved Enhancers Active in Early Embryonic Development

    Get PDF
    Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES) cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas “gene regulatory hotspots” which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints

    Biophysics of Malarial Parasite Exit from Infected Erythrocytes

    Get PDF
    Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.Singapore. Agency for Science, Technology and ResearchSingapore-MIT AllianceGlobal Enterprise for Micro-Mechanics and Molecular MedicineNational University of SingaporeNational Institutes of Health (U.S.) (Grant R01 HL094270-01A1)National Institutes of Health (U.S.) (Grant 1-R01-GM076689-01)National Institutes of Health (U.S.) (P41-RR02594-18-24
    corecore