41 research outputs found

    Masculinization of the X Chromosome in the Pea Aphid

    Get PDF
    International audienceEvolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution

    Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

    Get PDF
    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.Beatriz Sabater-Muñoz... et al

    Strong biases in the transmission of sex chromosomes in the aphid Rhopalosiphum padi

    No full text
    International audienceThe typical life cycle of aphids involves several parthenogenetic generations followed by a single sexual one in autumn, i.e. cyclical parthenogenesis. Sexual females are genetically identical to their parthenogenetic mothers and carry two sex chromosomes (XX). Male production involves the elimination of one sex chromosome (to produce X0) that could give rise to genetic conflicts between X-chromosomes. In addition, deleterious recessive 'mutations could accumulate on sex chromosomes during the parthenogenetic phase and affect males differentially depending on the X-chromosome they inherit. Genetic conflicts and deleterious mutations thus may induce transmission bias that could be exaggerated in males. Here, the transmission of X-chromosomes has been studied in the laboratory in two cyclically parthenogenetic lineages of the bird cherry-oat aphid Rhopalosiphum padi. X-chromosome transmission was followed, using X-linked microsatellite loci, at male production in the two lineages and in their hybrids deriving from reciprocal crosses. Genetic analyses revealed non-Mendelian inheritance of X-chromosomes in both parental and hybrid lineages at different steps of male function. Putative mechanisms and evolutionary consequences of non-Mendelian transmission of X-chromosomes to males are discusse

    Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers

    No full text
    International audienceCyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long‐term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general‐purpose genotype hypothesi

    Admixed sexual and facultatively asexual aphid lineages at mating sites

    No full text
    International audienceCyclically parthenogenetic organisms may have facultative asexual counterparts. Such organisms, including aphids, are therefore interesting models for the study of ecological and genetic interactions between lineages differing in reproductive mode. Earlier studies on aphids have revealed major differences in the genetic outcomes of populations that are possibly resulting mostly either from sexual or from asexual reproduction. Besides, notable gene flow between sexual and asexual derivatives has been suspected, which could lead to the emergence of new asexual lineages. The present study examines the interplay between these lineages and is based on analyses of population structure of individuals that may contribute to the pool of sexual reproductive forms in the host alternating aphid Rhopalosiphum padi. Using a Bayesian assignment method, we first show that the sexual forms of R. padi on mating sites encompass two genetically distinct clusters of individuals in the western part of France. The first cluster included unique genotypes of sexual lineages, while the second cluster included facultatively asexual lineages in numerous copies, the reproductive mode of the two clusters being confirmed by reference clones. Sexual reproductive forms produced by sexual and facultatively asexual lineages are thus admixed at mating sites which gives a large opportunity for the two clusters to mate with each other. Nevertheless, this study also highlights, as previously demonstrated, that the two clusters retained high genetic differentiation. Possible explanations for the inferred limited genetic exchanges are advanced in the discussion, but further dedicated investigations are required to solve this paradox

    Cuticular proteins and seasonal photoperiodism in aphid

    No full text
    International audienceFor poikilotherm animals such as insects, extreme temperatures can be a severe issue in continental regions. Aphids, which reproduce in spring and summer by viviparity, are prone to death in hard winter conditions. These species exhibit reproductive plasticity adapted to winter by producing oviparous females in autumn, which lay overwintering eggs. This switch is driven by photoperiodism, and long nights are sufficient to trigger the change in reproductive mode. Global transcriptomic analyses applied to the pea aphid Acyrthosiphon pisum for which genomic resources are now available have allowed the identification of several genetic programs regulated by photoperiod shortening. Unexpectedly, one of these genetic programs concerns cuticle proteins and cuticle structure. This opens new tracks for investigations and poses new hypotheses on the link between cuticle modification and neuronal signalisation of photoperiod in aphids in response to seasonal photoperiodism. This review focuses on the description of cuticular protein genes in the pea aphid and their regulation during the change of reproductive mode

    Dosage compensation and sex-specific epigenetic landscape of the X chromosome in the pea aphid.

    Get PDF
    International audienceBackground - Heterogametic species display a differential number of sex chromosomes resulting in imbalanced transcription levels for these chromosomes between males and females. To correct this disequilibrium, dosage compensation mechanisms involving gene expression and chromatin accessibility regulations have emerged throughout evolution. In insects, these mechanisms have been extensively characterized only in Drosophila but not in insects of agronomical importance. Aphids are indeed major pests of a wide range of crops. Their remarkable ability to switch from asexual to sexual reproduction during their life cycle largely explains the economic losses they can cause. As heterogametic insects, male aphids are X0, while females (asexual and sexual) are XX. Results - Here, we analyzed transcriptomic and open chromatin data obtained from whole male and female individuals to evaluate the putative existence of a dosage compensation mechanism involving differential chromatin accessibility of the pea aphid's X chromosome. Transcriptomic analyses first showed X/AA and XX/AA expression ratios for expressed genes close to 1 in males and females, respectively, suggesting dosage compensation in the pea aphid. Analyses of open chromatin data obtained by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq) revealed a X chromosome chromatin accessibility globally and significantly higher in males than in females, while autosomes' chromatin accessibility is similar between sexes. Moreover, chromatin environment of X-linked genes displaying similar expression levels in males and females-and thus likely to be compensated-is significantly more accessible in males. Conclusions - Our results suggest the existence of an underlying epigenetic mechanism enhancing the X chromosome chromatin accessibility in males to allow X-linked gene dose correction between sexes in the pea aphid, similar to Drosophila. Our study gives new evidence into the comprehension of dosage compensation in link with chromatin biology in insects and newly in a major crop pest, taking benefits from both transcriptomic and open chromatin data

    Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species

    No full text
    International audienceUnderstanding the mode of origin of asexuality is central to ongoing debates concerning the evolution and maintenance of sexual reproduction in eukaryotes. This is because it has profound consequences for patterns of genetic diversity and ecological adaptability of asexual lineages, hence on the outcome of competition with sexual relatives both in short and longer terms. Among the possible routes to asexuality, hybridization is a very common mechanism in animals and plants. Aphids present frequent transitions from their ancestral reproductive mode (cyclical parthenogenesis) to permanent asexuality, but the mode of origin of asexual lineages is generally not known because it has never been thoroughly investigated with appropriate molecular tools. Rhopalosiphum padi is an aphid species with coexisting sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) lineages that are genetically distinct. Previous studies have shown that asexual lineages of R. padi are heterozygous at most nuclear loci, suggesting either that they have undergone long-term asexuality (under which heterozygosity tends to increase) or that they have hybrid origins. To discriminate between these alternatives, we conducted an extensive molecular survey combining the sequence analysis of alleles of two nuclear DNA markers and mitochondrial DNA haplotypes in sexual and asexual lineages of R. padi. Both nuclear and cytoplasmic markers clearly showed that many asexual lineages have hybrid origins, the first such demonstration in aphids. Our results also indicated that asexuals result from multiple events of hybridization between R. padi and an unknown sibling species, and are of recent origin (contradicting previous estimates that asexual R. padi lineages were of moderate longevity). This study constitutes another example that putatively ancient asexual lineages are actually of much more recent origin than previously thought. It also presents a robust approach for testing whether hybrid origin of asexuality is also a common phenomenon in aphid

    Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae

    No full text
    International audienceIn Chile, the aphid Sitobion avenae is of recent introduction, lives on cultivated and wild Poaceae, and is thought to reproduce by permanent parthenogenesis. In order to study the genetic variability and population structure of this species, five microsatellite loci were typed from individual aphids collected from different cultivated and wild host plants, from different geographical zones, and years. Chilean populations showed a high degree of heterozygosity and a low genetic variability across regions and years, with four predominant genotypes representing nearly 90% of the sample. This pattern of low clonal diversity and high heterozygosity was interpreted as the result of recent founder events from a few asexually reproducing genotypes. Most geographical and temporal variation observed in the genetic composition resulted from fluctuations of a few predominant clones. In addition, comparisons of the genotypes found in Chile with those described in earlier surveys of S. a! venae populations in Western Europe led us to identify 'superclones' with large geographical distribution and high ecological success, and to make a preliminary exploration of the putative origin(s) of S. avenae individuals introduced to Chile
    corecore