10 research outputs found

    Turning Vice into Virtue : Using Batch-Effects to Detect Errors in Large Genomic Data Sets

    Get PDF
    It is often unavoidable to combine data from different sequencing centers or sequencing platforms when compiling data sets with a large number of individuals. However, the different data are likely to contain specific systematic errors that will appear as SNPs. Here, we devise a method to detect systematic errors in combined data sets. To measure quality differences between individual genomes, we study pairs of variants that reside on different chromosomes and co-occur in individuals. The abundance of these pairs of variants in different genomes is then used to detect systematic errors due to batch effects. Applying our method to the 1000 Genomes data set, we find that coding regions are enriched for errors, where similar to 1% of the higher frequency variants are predicted to be erroneous, whereas errors outside of coding regions are much rarer (Peer reviewe

    Kiwi genome provides insights into evolution of a nocturnal lifestyle

    Get PDF
    Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.Funding: Deutsche Forschungsgemeinschaft, Medical Faculty, University of Leipzig, NSERC, Max Planck Society, Sao Paulo Research Foundation (FAPESP)  2011/12500-2 </p

    Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

    No full text
    Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage

    Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

    No full text
    Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human-chimpanzee split to at least 7-8 million years and the population split between Neanderthals and modern humans to 400,000-800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage.</p

    Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily

    Get PDF
    Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700-4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas LateMesolithic HGs carry similar to 20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only similar to 7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to similar to 8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell&apos;Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition.N

    Review of Process and Non-invasive Near-Infrared and Infrared Spectroscopy: 1993–1999

    No full text
    corecore