1,270 research outputs found
Spacecraft design sensitivity for a disaster warning satellite system
A disaster warning satellite (DWS) is described for warning the general public of impending natural catastrophes. The concept is responsive to NOAA requirements and maximizes the use of ATS-6 technology. Upon completion of concept development, the study was extended to establishing the sensitivity of the DWSS spacecraft power, weight, and cost to variations in both warning and conventional communications functions. The results of this sensitivity analysis are presented
Segmental chiropractic spinal manipulation does not reduce pain amplification and the associated pain-related brain activity in a capsaicin-heat pain model
Musculoskeletal injuries lead to sensitization of nociceptors and primary hyperalgesia (hypersensitivity to painful stimuli). This occurs with back injuries, which are associated with acute pain and increased pain sensitivity at the site of injury. In some cases, back pain persists and leads to central sensitization and chronic pain. Thus, reducing primary hyperalgesia to prevent central sensitization may limit the transition from acute to chronic back pain. It has been shown that spinal manipulation (SM) reduces experimental and clinical pain, but the effect of SM on primary hyperalgesia and hypersensitivity to painful stimuli remains unclear. The goal of the present study was to investigate the effect of SM on pain hypersensitivity using a capsaicin-heat pain model. Laser stimulation was used to evoke heat pain and the associated brain activity, which were measured to assess their modulation by SM. Eighty healthy participants were recruited and randomly assigned to one of the four experimental groups: inert cream and no intervention; capsaicin cream and no intervention; capsaicin cream and SM at T7; capsaicin cream and placebo. Inert or capsaicin cream (1%) was applied to the T9 area. SM or placebo were performed 25 min after cream application. A series of laser stimuli were delivered on the area of cream application (1) before cream application, (2) after cream application but before SM or placebo, and (3) after SM or placebo. Capsaicin cream induced a significant increase in laser pain (p < 0.001) and laser-evoked potential amplitude (p < 0.001). However, SM did not decrease the amplification of laser pain or laser-evoked potentials by capsaicin. These results indicate that segmental SM does not reduce pain hypersensitivity and the associated pain-related brain activity in a capsaicin-heat pain model
Prospects for the rapid detection of mealiness in apples by nondestructive NMR relaxometry
The potential of nuclear magnetic resonance (NMR) relaxometry for quantitative evaluation of apple mealiness has been investigated. The degree of "mealiness" was defined by several mechanical techniques, including penetration, compression and shear rupture as well as by the BRIX (soluble solids) and juiciness levels. These data were correlated with both magnetic resonance imaging (MRI) and NMR water proton transverse relaxation time measurements on a fruit-by-fruit basis. It was found that increasing mealiness caused a systematic increase in the transverse relaxation rate. The potential for rapid, on-line NMR/MRI detection of apple mealiness is discussed
Linking plastic ingestion research with marine wildlife conservation
Plastic is an increasingly pervasive marine pollutant. Concomitantly, the number of studies documenting plastic ingestion in wildlife is accelerating. Many of these studies aim to provide a baseline against which future levels of plastic ingestion can be compared, and are motivated by an underlying interest in the conservation of their study species and ecosystems. Although this research has helped to raise the profile of plastic as a pollutant of emerging concern, there is a disconnect between research examining plastic pollution and wildlife conservation. We present ideas to further discussion about how plastic ingestion research could benefit wildlife conservation by prioritising studies that elucidates the significance of plastic pollution as a population-level threat, identifies vulnerable populations, and evaluates strategies for mitigating impacts. The benefit of plastic ingestion research to marine wildlife can be improved by establishing a clearer understanding of how discoveries will be integrated into conservation and policy actions
Assimilation of healthy and indulgent impressions from labelling influences fullness but not intake or sensory experience
Background: Recent evidence suggests that products believed to be healthy may be over-consumed relative to believed indulgent or highly caloric products. The extent to which these effects relate to expectations from labelling, oral experience or assimilation of expectations is unclear. Over two experiments, we tested the hypotheses that healthy and indulgent information could be assimilated by oral experience of beverages and influence sensory evaluation, expected satiety, satiation and subsequent appetite. Additionally, we explored how expectation-experience congruency influenced these factors.
Results: Results supported some assimilation of healthiness and indulgent ratings—study 1 showed that indulgent ratings enhanced by the indulgent label persisted post-tasting, and this resulted in increased fullness ratings.
In study 2, congruency of healthy labels and oral experience promoted enhanced healthiness ratings. These healthiness and indulgent beliefs did not influence sensory analysis or intake—these were dictated by the products themselves. Healthy labels, but not experience, were associated with decreased expected satiety.
Conclusions: Overall labels generated expectations, and some assimilation where there were congruencies between expectation and experience, but oral experience tended to override initial expectations to determine ultimate sensory evaluations and intake. Familiarity with the sensory properties of the test beverages may have resulted in the use of prior knowledge, rather than the label information, to guide evaluations and behaviour
Effects of chiropractic spinal manipulation on laser-evoked pain and brain activity
The aim of this study was to examine the mechanisms underlying hypoalgesia induced by spinal manipulation (SM). Eighty-two healthy volunteers were assigned to one of the four intervention groups: no intervention, SM at T4 (homosegmental to pain), SM at T8 (heterosegmental to pain) or light mechanical stimulus at T4 (placebo). Eighty laser stimuli were applied on back skin at T4 to evoke pain and brain activity related to Aδ- and C-fibers activation. The intervention was performed after 40 stimuli. Laser pain was decreased by SM at T4 (p = 0.028) but not T8 (p = 0.13), compared with placebo. However, brain activity related to Aδ-fibers activation was not significantly modulated (all p > 0.05), while C-fiber activity could not be measured reliably. This indicates that SM produces segmental hypoalgesia through inhibition of nociceptive processes that are independent of Aδ fibers. It remains to be clarified whether the effect is mediated by the inhibition of C-fiber activity. [Figure not available: see fulltext.]. © 2021, The Author(s)
Primary Structure and Catalytic Mechanism of the Epoxide Hydrolase from Agrobacterium radiobacter AD1
The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme. The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa. An identical epoxide hydrolase gene was cloned from chromosomal DNA of the closely related strain A. radiobacter CFZ11. The recombinant epoxide hydrolase was expressed up to 40% of the total cellular protein content in Escherichia coli BL21(DE3) and the purified enzyme had a kcat of 21 s-1 with epichlorohydrin. Amino acid sequence similarity of the epoxide hydrolase with eukaryotic epoxide hydrolases, haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, and bromoperoxidase A2 from Streptomyces aureofaciens indicated that it belonged to the α/β-hydrolase fold family. This conclusion was supported by secondary structure predictions and analysis of the secondary structure with circular dichroism spectroscopy. The catalytic triad residues of epoxide hydrolase are proposed to be Asp107, His275, and Asp246. Replacement of these residues to Ala/Glu, Arg/Gln, and Ala, respectively, resulted in a dramatic loss of activity for epichlorohydrin. The reaction mechanism of epoxide hydrolase proceeds via a covalently bound ester intermediate, as was shown by single turnover experiments with the His275 → Arg mutant of epoxide hydrolase in which the ester intermediate could be trapped.
Recommended from our members
Revision Acromioclavicular-Coracoclavicular Reconstruction: Use of Precontoured Button and 2 Allografts
Injuries to the acromioclavicular (AC) joint are common, particularly in the young and active population. Approximately 9% of all shoulder girdle injuries involve the AC joint, and AC joint dislocations represent approximately 8% of all joint dislocations throughout the body. AC joint injuries are graded as type I through type VI according to the Rockwood classification. Type I and II injuries are typically treated nonoperatively, whereas type IV, V, and VI injuries are most often treated surgically. A variety of surgical techniques have been described, including anatomic and nonanatomic reconstruction. However, up to 80% of patients go on to lose radiographic reduction, and between 20% and 30% have complications leading to reoperation. Therefore, the objective of this Technical Note is to describe our preferred technique for the treatment of AC joint instability in the revision setting. This technique uses a Dog Bone Button (Arthrex, Naples, FL) and 2 allografts
Recommended best practices for plastic and litter ingestion studies in marine birds: Collection, processing, and reporting
doi: 10.1139/facets-2018-0043Marine plastic pollution is an environmental contaminant of significant concern. There is a lack of
consistency in sample collection and processing that continues to impede meta-analyses and largescale comparisons across time and space. This is true for most taxa, including seabirds, which are
the most studied megafauna group with regards to plastic ingestion research. Consequently, it is difficult to evaluate the impacts and extent of plastic contamination in seabirds fully and accurately,
and to make inferences about species for which we have little or no data. We provide a synthesized set of recommendations specific for seabirds and plastic ingestion studies that include best practices in relation to sample collection, processing, and reporting, as well as highlighting some
“cross-cutting” methods. We include guidance for how carcasses, regurgitations, and pellets should
be handled and treated to prevent cross-contamination, and a discussion of what size class of microplastics can be assessed in each sample type. Although we focus on marine bird samples, we also
include standardized techniques to remove sediment and biological material that are generalizable
to other taxa. Lastly, metrics and data presentation of ingested plastics are briefly reviewed in the
context of seabird studies.Copyright: © 2019 Provencher et al. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. The attached file is the published pdf
- …